Umbrella: Uncertainty-aware model-based offline reinforcement learning leveraging planning C Diehl, T Sievernich, M Krüger, F Hoffmann, T Bertram arXiv preprint arXiv:2111.11097, 2021 | 27 | 2021 |
Probabilistic lane change prediction using Gaussian process neural networks M Krüger, AS Novo, T Nattermann, T Bertram 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 3651-3656, 2019 | 22 | 2019 |
Uncertainty-aware model-based offline reinforcement learning for automated driving C Diehl, TS Sievernich, M Krüger, F Hoffmann, T Bertram IEEE Robotics and Automation Letters 8 (2), 1167-1174, 2023 | 20 | 2023 |
Interaction-aware trajectory prediction based on a 3D spatio-temporal tensor representation using convolutional–recurrent neural networks M Krüger, AS Novo, T Nattermann, T Bertram 2020 IEEE Intelligent Vehicles Symposium (IV), 1122-1127, 2020 | 11 | 2020 |
Kinematic and dynamic description of non-standard snake-like locomotion systems C Behn, L Heinz, M Krüger Mechatronics 37, 1-11, 2016 | 9 | 2016 |
Structural analysis of a neural network for lane change prediction for automated driving M Krueger, S Meuresch, AS Novo, T Nattermann, KH Glander, T Bertram 26. Workshop Computational Intelligence, 2016 | 6 | 2016 |
Differentiable constrained imitation learning for robot motion planning and control C Diehl, J Adamek, M Krüger, F Hoffmann, T Bertram arXiv preprint arXiv:2210.11796, 2022 | 5 | 2022 |
A review on scene prediction for automated driving A Stockem Novo, M Krüger, M Stolpe, T Bertram Physics 4 (1), 132-159, 2022 | 5 | 2022 |
Reducing noise in label annotation: a lane change prediction case study M Krüger, AS Novo, T Nattermann, M Mohamed, T Bertram IFAC-PapersOnLine 52 (8), 221-226, 2019 | 5 | 2019 |
Daten lane change prediction using neural networks considering classwise non-uniformly distributed data M Krueger, AS Novo, T Nattermann, KH Glander, T Bertram AmE 2018-Automotive meets Electronics; 9th GMM-Symposium, 1-6, 2018 | 5 | 2018 |
Fahrspurerkennung mit Deep Learning für automatisierte Fahrfunktionen M Schmidt, C Lienke, M Oeljeklaus, M Krüger, T Nattermann, M Mohamed, ... Proceedings 28, 147-173, 2018 | 4 | 2018 |
Energy-based potential games for joint motion forecasting and control C Diehl, T Klosek, M Krueger, N Murzyn, T Osterburg, T Bertram 7th Annual Conference on Robot Learning, 2023 | 3 | 2023 |
On a Connection between Differential Games, Optimal Control, and Energy-based Models for Multi-Agent Interactions C Diehl, T Klosek, M Krüger, N Murzyn, T Bertram arXiv preprint arXiv:2308.16539, 2023 | 3 | 2023 |
Reviewing 3d object detectors in the context of high-resolution 3+ 1d radar P Palmer, M Krueger, R Altendorfer, G Adam, T Bertram arXiv preprint arXiv:2308.05478, 2023 | 3 | 2023 |
Ego-motion estimation and dynamic motion separation from 3D point clouds for accumulating data and improving 3D object detection P Palmer, M Krueger, R Altendorfer, T Bertram AmE 2023–Automotive meets Electronics; 14. GMM Symposium, 86-91, 2023 | 2 | 2023 |
Fahrstreifenerkennung mit Deep Learning für automatisierte Fahrfunktionen M Schmidt, M Krüger, C Lienke, M Oeljeklaus, T Nattermann, M Mohamed, ... at-Automatisierungstechnik 67 (10), 866-878, 2019 | 2 | 2019 |
Lane detection for automated driving using Deep Learning M Schmidt, M Krueger, C Lienke, M Oeljeklaus, T Nattermann, ... AT-AUTOMATISIERUNGSTECHNIK 67 (10), 866-878, 2019 | 2 | 2019 |
Ego-Motion Correction based on Static Objects detected by an Automotive Lidar Sensor System N Stannartz, C Wissing, M Krueger, A Tolmidis, SI Ali, T Nattermann, ... AmE 2019-Automotive meets Electronics; 10th GMM-Symposium, 1-6, 2019 | 2 | 2019 |
Recognition Beyond Perception: Environmental Model Completion by Reasoning for Occluded Vehicles M Krueger, P Palmer, C Diehl, T Osterburg, T Bertram IEEE Robotics and Automation Letters 7 (4), 10999-11006, 2022 | 1 | 2022 |
LEROjD: Lidar Extended Radar-Only Object Detection P Palmer, M Krüger, S Schütte, R Altendorfer, G Adam, T Bertram arXiv preprint arXiv:2409.05564, 2024 | | 2024 |