Optimal classification trees D Bertsimas, J Dunn Machine Learning 106, 1039-1082, 2017 | 757 | 2017 |
Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive optimal trees in emergency surgery risk (POTTER) calculator D Bertsimas, J Dunn, GC Velmahos, HMA Kaafarani Annals of surgery 268 (4), 574-583, 2018 | 237 | 2018 |
Machine learning under a modern optimization lens D Bertsimas, J Dunn Dynamic Ideas LLC, 2019 | 145 | 2019 |
Optimal prescriptive trees D Bertsimas, J Dunn, N Mundru INFORMS Journal on Optimization 1 (2), 164-183, 2019 | 113 | 2019 |
Robust classification D Bertsimas, J Dunn, C Pawlowski, YD Zhuo INFORMS Journal on Optimization 1 (1), 2-34, 2019 | 112 | 2019 |
Optimal trees for prediction and prescription JW Dunn Massachusetts Institute of Technology, 2018 | 66 | 2018 |
Applied informatics decision support tool for mortality predictions in patients with cancer D Bertsimas, J Dunn, C Pawlowski, J Silberholz, A Weinstein, YD Zhuo, ... JCO clinical cancer informatics 2, 1-11, 2018 | 61 | 2018 |
Optimal policy trees M Amram, J Dunn, YD Zhuo Machine Learning 111 (7), 2741-2768, 2022 | 41 | 2022 |
Validation of the artificial intelligence-based predictive optimal trees in emergency surgery risk (POTTER) calculator in emergency general surgery and emergency laparotomy … MW El Hechi, LR Maurer, J Levine, D Zhuo, M El Moheb, GC Velmahos, ... Journal of the American College of Surgeons 232 (6), 912-919. e1, 2021 | 41 | 2021 |
Trauma outcome predictor: an artificial intelligence interactive smartphone tool to predict outcomes in trauma patients LR Maurer, D Bertsimas, HT Bouardi, M El Hechi, M El Moheb, ... Journal of Trauma and Acute Care Surgery 91 (1), 93-99, 2021 | 40 | 2021 |
Comparison of machine learning optimal classification trees with the pediatric emergency care applied research network head trauma decision rules D Bertsimas, J Dunn, DW Steele, TA Trikalinos, Y Wang JAMA pediatrics 173 (7), 648-656, 2019 | 38 | 2019 |
Optimal survival trees D Bertsimas, J Dunn, E Gibson, A Orfanoudaki Machine learning 111 (8), 2951-3023, 2022 | 32 | 2022 |
Adverse outcomes prediction for congenital heart surgery: a machine learning approach D Bertsimas, D Zhuo, J Dunn, J Levine, E Zuccarelli, N Smyrnakis, ... World Journal for Pediatric and Congenital Heart Surgery 12 (4), 453-460, 2021 | 29 | 2021 |
Comparing interpretability and explainability for feature selection J Dunn, L Mingardi, YD Zhuo arXiv preprint arXiv:2105.05328, 2021 | 27 | 2021 |
Validation of the Al-based Predictive OpTimal Trees in Emergency Surgery Risk (POTTER) calculator in patients 65 years and older LR Maurer, P Chetlur, D Zhuo, M El Hechi, GC Velmahos, J Dunn, ... Annals of Surgery 277 (1), e8-e15, 2023 | 25 | 2023 |
Near-optimal nonlinear regression trees D Bertsimas, J Dunn, Y Wang Operations Research Letters 49 (2), 201-206, 2021 | 22 | 2021 |
Targeted workup after initial febrile urinary tract infection: using a novel machine learning model to identify children most likely to benefit from voiding cystourethrogram Advanced Analytics Group of Pediatric Urology and ORC Personalized Medicine ... The Journal of Urology 202 (1), 144-152, 2019 | 17 | 2019 |
Regression and classification using optimal decision trees D Bertsimas, J Dunn, A Paschalidis 2017 IEEE MIT undergraduate research technology conference (URTC), 1-4, 2017 | 14 | 2017 |
Interpretable predictive maintenance for hard drives M Amram, J Dunn, JJ Toledano, YD Zhuo Machine Learning with Applications 5, 100042, 2021 | 13 | 2021 |
Validation of the artificial intelligence–based trauma outcomes predictor (TOP) in patients 65 years and older M El Hechi, A Gebran, HT Bouardi, LR Maurer, M El Moheb, D Zhuo, ... Surgery 171 (6), 1687-1694, 2022 | 10 | 2022 |