Evolvegcn: Evolving graph convolutional networks for dynamic graphs A Pareja, G Domeniconi, J Chen, T Ma, T Suzumura, H Kanezashi, ... Proceedings of the AAAI conference on artificial intelligence 34 (04), 5363-5370, 2020 | 1014 | 2020 |
Scalable graph learning for anti-money laundering: A first look M Weber, J Chen, T Suzumura, A Pareja, T Ma, H Kanezashi, T Kaler, ... arXiv preprint arXiv:1812.00076, 1-7, 2018 | 110 | 2018 |
The impact of COVID-19 on flight networks T Suzumura, H Kanezashi, M Dholakia, E Ishii, SA Napagao, ... 2020 ieee international conference on big data (big data), 2443-2452, 2020 | 46 | 2020 |
X10-based massive parallel large-scale traffic flow simulation T Suzumura, S Kato, T Imamichi, M Takeuchi, H Kanezashi, T Ide, ... Proceedings of the 2012 ACM SIGPLAN X10 Workshop, 1-4, 2012 | 39 | 2012 |
Highly scalable x10-based agent simulation platform and its application to large-scale traffic simulation T Suzumura, H Kanezashi 2012 IEEE/ACM 16th International Symposium on Distributed Simulation and …, 2012 | 36 | 2012 |
Extreme Big Data (EBD): Next generation big data infrastructure technologies towards yottabyte/year S Matsuoka, H Sato, O Tatebe, F Takatsu, MA Jabri, M Koibuchi, ... Supercomputing frontiers and innovations 1 (2), 89-107, 2014 | 33 | 2014 |
A high performance multi-modal traffic simulation platform and its case study with the Dublin city T Suzumura, G McArdle, H Kanezashi 2015 Winter Simulation Conference (WSC), 767-778, 2015 | 22 | 2015 |
Ethereum fraud detection with heterogeneous graph neural networks H Kanezashi, T Suzumura, X Liu, T Hirofuchi arXiv preprint arXiv:2203.12363, 2022 | 20 | 2022 |
Anti-Money Laundering Datasets: InPlusLab Anti-Money Laundering DataDatasets T Suzumura, H Kanezashi AMLSim, 2021 | 17 | 2021 |
Adaptive pattern matching with reinforcement learning for dynamic graphs H Kanezashi, T Suzumura, D Garcia-Gasulla, M Oh, S Matsuoka 2018 IEEE 25th International conference on high performance computing (HIPC …, 2018 | 15 | 2018 |
Multi-modal traffic simulation platform on parallel and distributed systems T Suzumura, H Kanezashi Proceedings of the Winter Simulation Conference 2014, 769-780, 2014 | 14 | 2014 |
How Expressive are Transformers in Spectral Domain for Graphs? A Bastos, A Nadgeri, K Singh, H Kanezashi, T Suzumura, IO Mulang arXiv preprint arXiv:2201.09332, 2022 | 13 | 2022 |
Accelerating large-scale distributed traffic simulation with adaptive synchronization method T Suzumura, H Kanezashi 20th ITS World CongressITS Japan, 2013 | 12 | 2013 |
Evolving graph convolutional networks for dynamic graphs J Chen, A Pareja, G Domeniconi, T Ma, T Suzumura, T Kaler, TB Schardl, ... US Patent 11,537,852, 2022 | 10 | 2022 |
An incremental local-first community detection method for dynamic graphs H Kanezashi, T Suzumura 2016 IEEE International Conference on Big Data (Big Data), 3318-3325, 2016 | 10 | 2016 |
Performance optimization for agent-based traffic simulation by dynamic agent assignment H Kanezashi, T Suzumura 2015 Winter Simulation Conference (WSC), 757-766, 2015 | 10 | 2015 |
Towards billion-scale social simulations T Suzumura, C Houngkaew, H Kanezashi Proceedings of the winter simulation conference 2014, 781-792, 2014 | 10 | 2014 |
A holistic architecture for super real-time multiagent simulation platforms T Suzumura, H Kanezashi 2013 Winter Simulations Conference (WSC), 1604-1612, 2013 | 8 | 2013 |
The Impact of COVID-19 on Flight Networks. arXiv 2020 T Suzumura, H Kanezashi, M Dholakia, E Ishii, SA Napagao, ... arXiv preprint arXiv:2006.02950, 0 | 8 | |
Global data science project for covid-19 summary report D Garcia-Gasulla, SA Napagao, I Li, H Maruyama, H Kanezashi, ... | 7 | 2020 |