关注
Ido Hakimi
Ido Hakimi
在 google.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Fine-tuning giant neural networks on commodity hardware with automatic pipeline model parallelism
S Eliad, I Hakimi, A De Jagger, M Silberstein, A Schuster
2021 USENIX Annual Technical Conference (USENIX ATC 21), 381-396, 2021
352021
Faster neural network training with approximate tensor operations
M Adelman, K Levy, I Hakimi, M Silberstein
Advances in Neural Information Processing Systems 34, 27877-27889, 2021
342021
Asynchronous distributed learning: Adapting to gradient delays without prior knowledge
RZ Aviv, I Hakimi, A Schuster, KY Levy
International Conference on Machine Learning, 436-445, 2021
28*2021
Taming momentum in a distributed asynchronous environment
I Hakimi, S Barkai, M Gabel, A Schuster
arXiv preprint arXiv:1907.11612, 2019
192019
Gap-Aware Mitigation of Gradient Staleness
S Barkai, I Hakimi, A Schuster
International Conference on Learning Representations (ICLR), 2020
172020
q2d: Turning questions into dialogs to teach models how to search
Y Bitton, S Cohen-Ganor, I Hakimi, Y Lewenberg, R Aharoni, E Weinreb
arXiv preprint arXiv:2304.14318, 2023
32023
Laga: Lagged allreduce with gradient accumulation for minimal idle time
I Hakimi, RZ Aviv, KY Levy, A Schuster
2021 IEEE International Conference on Data Mining (ICDM), 171-180, 2021
32021
SMEGA2: Distributed Asynchronous Deep Neural Network Training With a Single Momentum Buffer
R Cohen, I Hakimi, A Schuster
Proceedings of the 51st International Conference on Parallel Processing, 1-10, 2022
12022
Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs
J Hübotter, S Bongni, I Hakimi, A Krause
arXiv preprint arXiv:2410.08020, 2024
2024
Gap-aware mitigation of gradient staleness
A Schuster, S Barkai, I Hakimi
US Patent 11,631,035, 2023
2023
Distributed Deep Neural Networks
I Hakimi, A Schuster
Computer Science Department, Technion, 2022
2022
Improving the Ability of Large Language Models
J Hübotter, I Hakimi
系统目前无法执行此操作,请稍后再试。
文章 1–12