关注
Giacomo Bassetto
Giacomo Bassetto
research center caesar, an associate of the Max Planck Society, Bonn, Germany
在 caesar.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
Flexible statistical inference for mechanistic models of neural dynamics
JM Lueckmann, PJ Goncalves, G Bassetto, K Öcal, M Nonnenmacher, ...
Advances in Neural Information Processing Systems, 1289-1299, 2017
2462017
Training deep neural density estimators to identify mechanistic models of neural dynamics
PJ Gonçalves, JM Lueckmann, M Deistler, M Nonnenmacher, K Öcal, ...
Elife 9, e56261, 2020
1932020
Likelihood-free inference with emulator networks
JM Lueckmann, G Bassetto, T Karaletsos, JH Macke
Symposium on Advances in Approximate Bayesian Inference, 32-53, 2019
1282019
Visual pursuit behavior in mice maintains the pursued prey on the retinal region with least optic flow
CD Holmgren, P Stahr, DJ Wallace, KM Voit, EJ Matheson, J Sawinski, ...
Elife 10, e70838, 2021
382021
Training deep neural density estimators to identify mechanistic models of neural dynamics. bioRxiv
PJ Gonçalves, JM Lueckmann, M Deistler, M Nonnenmacher, K Öcal, ...
122019
Advances in Neural Information Processing Systems
JM Lueckmann, PJ Goncalves, G Bassetto, K Öcal, M Nonnenmacher, ...
Go to reference in article, 2017
122017
Likelihood-free inference with emulator networks. arxiv e-prints
J Lueckmann, G Bassetto, T Karaletsos, J Macke
arXiv preprint arXiv:1805.09294, 2019
92019
A Bayesian model for identifying hierarchically organised states in neural population activity
P Putzky, F Franzen, G Bassetto, JH Macke
Advances in Neural Information Processing Systems, 3095-3103, 2014
82014
Characterizing retinal ganglion cell responses to electrical stimulation using generalized linear models
S Sekhar, P Ramesh, G Bassetto, E Zrenner, JH Macke, DL Rathbun
Frontiers in Neuroscience 14, 2020
72020
Flexible statistical inference for mechanistic models of neural dynamics. arXiv
JM Lueckmann, PJ Goncalves, G Bassetto, K Ocal, M Nonnenmacher, ...
arXiv preprint arXiv:1711.01861, 2017
52017
Robust statistical inference for simulation-based models in neuroscience
M Nonnenmacher, PJ Goncalves, G Bassetto, JM Lueckmann, JH Macke
Bernstein Conference 2018, Berlin, Germany, 2018
22018
Electrophysiology Analysis, Bayesian
G Bassetto, JH Macke
Encyclopedia of Computational Neuroscience, 1280-1284, 2022
12022
Amortised inference for mechanistic models of neural dynamics
JM Lueckmann, PJ Gonçalves, C Chintaluri, WF Podlaski, G Bassetto, ...
Computational and Systems Neuroscience (Cosyne) 2019, 108, 2019
12019
Flexible statistical inference for mechanistic models of neural dynamics
P Goncalves, JM Lueckmann, G Bassetto, K Oecal, M Nonnenmacher, ...
Bonn Brain 3 Conference 2018, Bonn, Germany, 2018
12018
Bayesian parametric receptive-field identification from sparse or noisy data
G Bassetto
Universität Tübingen, 2023
2023
Inferring the parameters of neural simulations from high-dimensional observations
M Nonnenmacher, JM Lueckmann, G Bassetto, PJ Goncalves, JH Macke
Computational and Systems Neuroscience (COSYNE) 2019, Lisbon, Portugal, 2019
2019
Using bayesian inference to estimate receptive fields from a small number of spikes
G Bassetto, JH Macke
Computational and Systems Neuroscience Meeting (COSYNE 2017), 64-64, 2017
2017
Full Bayesian inference for model-based receptive field estimation, with application to primary visual cortex
G Bassetto, J Macke
Bernstein Conference 2016, 117-118, 2016
2016
Anatomical basis of spiking correlation in upper layers of somatosensory cortex
U Czubayko, G Bassetto, RT Narayanan, M Oberlaender, JH Macke, ...
45th Annual Meeting of the Society for Neuroscience (Neuroscience 2015), 2015
2015
A statistical characterization of neural population responses in V1
G Basseto, F Sandhaeger, A Ecker, JH Macke
Bernstein Conference 2015, 146-147, 2015
2015
系统目前无法执行此操作,请稍后再试。
文章 1–20