受强制性开放获取政策约束的文章 - Yi-An Ma了解详情
可在其他位置公开访问的文章:21 篇
Single-cell mRNA quantification and differential analysis with Census
X Qiu, A Hill, J Packer, D Lin, YA Ma, C Trapnell
Nature methods 14 (3), 309-315, 2017
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
Mapping transcriptomic vector fields of single cells
X Qiu, Y Zhang, JD Martin-Rufino, C Weng, S Hosseinzadeh, D Yang, ...
Cell 185 (4), 690-711. e45, 2022
强制性开放获取政策: US National Science Foundation, US Department of Defense, US National …
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States
EY Cramer, EL Ray, VK Lopez, J Bracher, A Brennen, ...
Proceedings of the National Academy of Sciences 119 (15), e2113561119, 2022
强制性开放获取政策: US National Science Foundation, US Department of Energy, Bill & Melinda …
Sampling can be faster than optimization
YA Ma, Y Chen, C Jin, N Flammarion, MI Jordan
Proceedings of the National Academy of Sciences 116 (42), 20881-20885, 2019
强制性开放获取政策: US Department of Defense
Is there an analog of Nesterov acceleration for gradient-based MCMC?
YA Ma, NS Chatterji, X Cheng, N Flammarion, PL Bartlett, MI Jordan
Bernoulli 27 (3), 1942-1992, 2021
强制性开放获取政策: US National Science Foundation, US Department of Defense
On the theory of variance reduction for stochastic gradient Monte Carlo
N Chatterji, N Flammarion, YA Ma, P Bartlett, M Jordan
International Conference on Machine Learning, 764-773, 2018
强制性开放获取政策: US National Science Foundation, US Department of Defense
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
W Mou, YA Ma, MJ Wainwright, PL Bartlett, MI Jordan
Journal of Machine Learning Research 22 (42), 1-41, 2021
强制性开放获取政策: US National Science Foundation, US Department of Defense
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
D Wu, L Gao, X Xiong, M Chinazzi, A Vespignani, YA Ma, R Yu
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 1841–1851, 2021
强制性开放获取政策: US National Science Foundation, US Department of Defense, US National …
Irreversible samplers from jump and continuous Markov processes
YA Ma, EB Fox, T Chen, L Wu
Statistics and Computing 29 (1), 177-202, 2019
强制性开放获取政策: US National Science Foundation, US Department of Defense
Stochastic Gradient MCMC for State Space Models
C Aicher, YA Ma, NJ Foti, EB Fox
SIAM Journal on Mathematics of Data Science 1 (3), 555-587, 2019
强制性开放获取政策: US National Science Foundation, US Department of Defense
Stochastic gradient MCMC methods for hidden Markov models
YA Ma, NJ Foti, EB Fox
Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017
强制性开放获取政策: US National Science Foundation, US Department of Defense
Disentangled multi-fidelity deep bayesian active learning.
D Wu, R Niu, M Chinazzi, Y Ma, R Yu
In International Conference on Machine Learning, 2023
强制性开放获取政策: US National Science Foundation, US Department of Energy, US Department of …
Reverse Diffusion Monte Carlo
X Huang, H Dong, HAO Yifan, Y Ma, T Zhang
The Twelfth International Conference on Learning Representations, 2024
强制性开放获取政策: US National Science Foundation, US Department of Energy, US Department of …
On Optimal Early Stopping: Over-informative versus Under-informative Parametrization
R Shen, L Gao, Y Ma
arXiv preprint arXiv:2202.09885, 2022
强制性开放获取政策: US National Science Foundation, US Department of Energy
When is the convergence time of Langevin algorithms dimension independent? A composite optimization viewpoint
Y Freund, YA Ma, T Zhang
The Journal of Machine Learning Research 23 (1), 9604-9635, 2022
强制性开放获取政策: US National Science Foundation, US Department of Energy
Multi-fidelity hierarchical neural processes
D Wu, M Chinazzi, A Vespignani, YA Ma, R Yu
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022
强制性开放获取政策: US National Science Foundation, US Department of Energy, US Department of …
Deep bayesian active learning for accelerating stochastic simulation
D Wu, R Niu, M Chinazzi, A Vespignani, YA Ma, R Yu
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023
强制性开放获取政策: US National Science Foundation, US Department of Energy, US Department of …
Posterior sampling with delayed feedback for reinforcement learning with linear function approximation
NL Kuang, M Yin, M Wang, YX Wang, Y Ma
Advances in Neural Information Processing Systems 36, 6782-6824, 2023
强制性开放获取政策: US National Science Foundation, US Department of Energy, US Department of …
The adaptive spectral koopman method for dynamical systems
B Li, Y Ma, JN Kutz, X Yang
SIAM Journal on Applied Dynamical Systems 22 (3), 1523-1551, 2023
强制性开放获取政策: US National Science Foundation, US Department of Energy
Langevin Thompson Sampling with Logarithmic Communication: Bandits and Reinforcement Learning
A Karbasi, NL Kuang, Y Ma, S Mitra
International Conference on Machine Learning, 15828-15860, 2023
强制性开放获取政策: US National Science Foundation, US Department of Energy, US Department of …
出版信息和资助信息由计算机程序自动确定