Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations CAKMH Carpenter Applied Numerical Mathematics 44, 139-181, 2003 | 914 | 2003 |
Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations CAKMH Carpenter NASA TM-2001-211038, 2001 | 914* | 2001 |
Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes MH Carpenter, D Gottlieb, S Abarbanel Journal of Computational Physics 111 (2), 220-236, 1994 | 813 | 1994 |
Fourth-order 2N-storage Runge-Kutta schemes MH Carpenter, CA Kennedy | 743 | 1994 |
Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations CA Kennedy, MH Carpenter, RM Lewis Applied numerical mathematics 35 (3), 177-219, 2000 | 707 | 2000 |
Several new numerical methods for compressible shear-layer simulations CA Kennedy, MH Carpenter Applied Numerical Mathematics 14 (4), 397-433, 1994 | 543 | 1994 |
The stability of numerical boundary treatments for compact high-order finite-difference schemes MH Carpenter, D Gottlieb, S Abarbanel Journal of Computational Physics 108 (2), 272-295, 1993 | 538 | 1993 |
A stable and conservative interface treatment of arbitrary spatial accuracy MH Carpenter, J Nordström, D Gottlieb Journal of Computational Physics 148 (2), 341-365, 1999 | 518 | 1999 |
High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains TC Fisher, MH Carpenter Journal of Computational Physics 252, 518-557, 2013 | 325 | 2013 |
Entropy stable spectral collocation schemes for the Navier--Stokes equations: Discontinuous interfaces MH Carpenter, TC Fisher, EJ Nielsen, SH Frankel SIAM Journal on Scientific Computing 36 (5), B835-B867, 2014 | 278 | 2014 |
A stable high-order finite difference scheme for the compressible Navier–Stokes equations, far-field boundary conditions M Svärd, MH Carpenter, J Nordström Journal of Computational Physics 225 (1), 1020-1038, 2007 | 251 | 2007 |
Implicit time integration schemes for the unsteady compressible Navier–Stokes equations: laminar flow H Bijl, MH Carpenter, VN Vatsa, CA Kennedy Journal of Computational Physics 179 (1), 313-329, 2002 | 230 | 2002 |
The theoretical accuracy of Runge–Kutta time discretizations for the initial boundary value problem: a study of the boundary error MH Carpenter, D Gottlieb, S Abarbanel, WS Don SIAM Journal on Scientific Computing 16 (6), 1241-1252, 1995 | 210 | 1995 |
Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier–Stokes equations J Nordström, MH Carpenter Journal of Computational Physics 148 (2), 621-645, 1999 | 208 | 1999 |
A systematic methodology for constructing high-order energy stable WENO schemes NK Yamaleev, MH Carpenter Journal of Computational Physics 228 (11), 4248-4272, 2009 | 206 | 2009 |
Application of implicit–explicit high order Runge–Kutta methods to discontinuous-Galerkin schemes A Kanevsky, MH Carpenter, D Gottlieb, JS Hesthaven Journal of Computational Physics 225 (2), 1753-1781, 2007 | 201 | 2007 |
Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions TC Fisher, MH Carpenter, J Nordström, NK Yamaleev, C Swanson Journal of Computational Physics 234, 353-375, 2013 | 199 | 2013 |
High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates J Nordström, MH Carpenter Journal of Computational Physics 173 (1), 149-174, 2001 | 183 | 2001 |
Third-order energy stable WENO scheme NK Yamaleev, MH Carpenter Journal of Computational Physics 228 (8), 3025-3047, 2009 | 169 | 2009 |
Spectral Methods on Arbitrary Grids MH Carpenter, D Gottlieb Journal of Computational Physics 129, 74-86, 1996 | 164 | 1996 |