关注
Camilla Scapicchio
Camilla Scapicchio
National Institute for Nuclear Physics (INFN), Sezione di Pisa
在 phd.unipi.it 的电子邮件经过验证
标题
引用次数
引用次数
年份
A deep look into radiomics
C Scapicchio, M Gabelloni, A Barucci, D Cioni, L Saba, E Neri
La radiologia medica 126 (10), 1296-1311, 2021
2992021
Bridging gaps between images and data: a systematic update on imaging biobanks
M Gabelloni, L Faggioni, R Borgheresi, G Restante, J Shortrede, ...
European radiology, 1-14, 2022
222022
Standardizing digital biobanks: integrating imaging, genomic, and clinical data for precision medicine
V Brancato, G Esposito, L Coppola, C Cavaliere, P Mirabelli, ...
Journal of Translational Medicine 22 (1), 136, 2024
212024
DICOM-MIABIS integration model for biobanks: a use case of the EU PRIMAGE project
C Scapicchio, M Gabelloni, SM Forte, LC Alberich, L Faggioni, ...
European Radiology Experimental 5, 1-12, 2021
142021
Convolutional neural networks for breast density classification: performance and explanation insights
F Lizzi, C Scapicchio, F Laruina, A Retico, ME Fantacci
Applied Sciences 12 (1), 148, 2021
132021
A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia
C Scapicchio, A Chincarini, E Ballante, L Berta, E Bicci, C Bortolotto, ...
European Radiology Experimental 7 (1), 18, 2023
92023
Explainability of a CNN for breast density assessment
C Scapicchio, F Lizzi, ME Fantacci
Il nuovo cimento C 44, 1, 2021
32021
EXPLAINING THE BEHAVIOUR OF A CONVOLUTIONAL NEURAL NETWORK FOR BREAST DENSITY ASSESSMENT
C Scapicchio, A Retico, F Lizzi, ME Fantacci
Physica Medica 104, 42-42, 2022
12022
SC10. 04 EVALUATION OF REPEATABILITY AND ROBUSTNESS OF CT-DERIVED RADIOMIC FEATURES USING A CUSTOM PHANTOM
MI Tenerani, M Imbriani, F Lizzi, S Pallotta, M Quattrocchi, A Retico, ...
Physica Medica 125, 103472, 2024
2024
A Multi-input Deep Learning Model to Classify COVID-19 Pneumonia Severity from Imaging and Clinical Data
F Lizzi, F Brero, M Evelina Fantacci, A Lascialfari, G Paternò, I Postuma, ...
International Work-Conference on Bioinformatics and Biomedical Engineering …, 2024
2024
Investigation of a potential upstream harmonization based on image appearance matching to improve radiomics features robustness: a phantom study
C Scapicchio, M Imbriani, F Lizzi, M Quattrocchi, A Retico, S Saponaro, ...
Biomedical Physics & Engineering Express 10 (4), 045006, 2024
2024
Implementation and optimization of explainable and trustworthy Artificial Intelligence algorithms for the analysis of radiological images
C SCAPICCHIO
2024
Explainability Applied to a Deep-Learning Based Algorithm for Lung Nodule Segmentation
CSMEF Arman Zafaranchi, Francesca Lizzi, Alessandra Retico
Proceedings of the 1st International Conference on Explainable AI for Neural …, 2024
2024
EVALUATION OF REPEATABILITY AND ROBUSTNESS OF CT-DERIVED RADIOMIC FEATURES USING A CUSTOM PHANTOM
MEF M.I. Tenerani , M. Imbriani , F. Lizzi , S. Pallotta , M. Quattrocchi ...
Physica Medica, 2024
2024
Integration and Optimization of XNAT-Based Platforms for the Management of Heterogeneous and Multicenter Data in Biomedical Research
AR Camilla Scapicchio, Silvia Arezzini, Maria Evelina Fantacci, Antonino ...
roceedings of the 13th International Conference on Data Science, Technology …, 2024
2024
Characterization and Quantification of Image Quality in CT Imaging Systems: A Phantom Study
C Scapicchio, M Imbriani, F Lizzi, M Quattrocchi, A Retico, S Saponaro, ...
Proceedings of the 17th International Joint Conference on Biomedical …, 2024
2024
Acknowledgment to the Reviewers of Sensors in 2022
Sensors Editorial Office
Sensors 23 (3), 1179, 2023
2023
COVID-19 SEVERITY PREDICTION BASED ON RADIOMIC FEATURES EXTRACTED FROM LUNG CT SCANS USING THE LUNGQUANT SEGMENTATION SOFTWARE
C Scapicchio, E Ballante, A Benfante, L Berta, C Bortolotto, F Brero, ...
Physica Medica 115, 2023
2023
Acknowledgment to the Reviewers of Sensors in 2022
AD Prasad, AN Sharkawy, AKMM Rahman, AR Akl, AP Zhang, A Elsaid, ...
Sensors 23, 1179, 2023
2023
Integration of a Deep Learning-Based Module for the Quantification of Imaging Features into the Filling-in Process of the Radiological Structured Report.
C Scapicchio, E Ballante, F Brero, RF Cabini, A Chincarini, ME Fantacci, ...
HEALTHINF, 663-670, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20