关注
Xavier Renard
Xavier Renard
在 lip6.fr 的电子邮件经过验证
标题
引用次数
引用次数
年份
Inverse classification for comparison-based interpretability in machine learning
T Laugel, MJ Lesot, C Marsala, X Renard, M Detyniecki
arXiv preprint arXiv:1712.08443, 2017
231*2017
The dangers of post-hoc interpretability: Unjustified counterfactual explanations
T Laugel, MJ Lesot, C Marsala, X Renard, M Detyniecki
arXiv preprint arXiv:1907.09294, 2019
2272019
Defining locality for surrogates in post-hoc interpretablity
T Laugel, X Renard, MJ Lesot, C Marsala, M Detyniecki
arXiv preprint arXiv:1806.07498, 2018
1072018
Imperceptible adversarial attacks on tabular data
V Ballet, X Renard, J Aigrain, T Laugel, P Frossard, M Detyniecki
arXiv preprint arXiv:1911.03274, 2019
992019
Random-shapelet: an algorithm for fast shapelet discovery
X Renard, M Rifqi, W Erray, M Detyniecki
2015 IEEE international conference on data science and advanced analytics …, 2015
562015
Unjustified classification regions and counterfactual explanations in machine learning
T Laugel, MJ Lesot, C Marsala, X Renard, M Detyniecki
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2020
322020
How to choose an explainability method? Towards a methodical implementation of XAI in practice
T Vermeire, T Laugel, X Renard, D Martens, M Detyniecki
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2021
162021
EAST representation: fast discriminant temporal patterns discovery from time series
X Renard, M Rifqi, G Fricout, M Detyniecki
ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, 2016
15*2016
Concept tree: High-level representation of variables for more interpretable surrogate decision trees
X Renard, N Woloszko, J Aigrain, M Detyniecki
arXiv preprint arXiv:1906.01297, 2019
132019
On the overlooked issue of defining explanation objectives for local-surrogate explainers
R Poyiadzi, X Renard, T Laugel, R Santos-Rodriguez, M Detyniecki
arXiv preprint arXiv:2106.05810, 2021
102021
Understanding prediction discrepancies in machine learning classifiers
X Renard, T Laugel, M Detyniecki
arXiv preprint arXiv:2104.05467, 2021
102021
A reference architecture for quality improvement in steel production
D Arnu, E Yaqub, C Mocci, V Colla, M Neuer, G Fricout, X Renard, ...
Data Science–Analytics and Applications: Proceedings of the 1st …, 2017
102017
Localized random shapelets
M Guilleme, S Malinowski, R Tavenard, X Renard
Advanced Analytics and Learning on Temporal Data: 4th ECML PKDD Workshop …, 2020
92020
Detecting potential local adversarial examples for human-interpretable defense
X Renard, T Laugel, MJ Lesot, C Marsala, M Detyniecki
ECML PKDD 2018 Workshops: Nemesis 2018, UrbReas 2018, SoGood 2018, IWAISe …, 2019
92019
Understanding surrogate explanations: the interplay between complexity, fidelity and coverage
R Poyiadzi, X Renard, T Laugel, R Santos-Rodriguez, M Detyniecki
arXiv preprint arXiv:2107.04309, 2021
62021
Time series representation for classification: a motif-based approach
X Renard
Université Pierre et Marie Curie-Paris VI, 2017
62017
Sentence-based model agnostic nlp interpretability
Y Rychener, X Renard, D Seddah, P Frossard, M Detyniecki
arXiv preprint arXiv:2012.13189, 2020
52020
Quackie: A NLP classification task with ground truth explanations
Y Rychener, X Renard, D Seddah, P Frossard, M Detyniecki
arXiv preprint arXiv:2012.13190, 2020
32020
On the Granularity of Explanations in Model Agnostic NLP Interpretability
Y Rychener, X Renard, D Seddah, P Frossard, M Detyniecki
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2022
12022
Dynamic Interpretability for Model Comparison via Decision Rules
A Rida, MJ Lesot, X Renard, C Marsala
arXiv preprint arXiv:2309.17095, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20