The scalar auxiliary variable (SAV) approach for gradient flows J Shen, J Xu, J Yang Journal of Computational Physics 353, 407-416, 2018 | 780 | 2018 |
A new class of efficient and robust energy stable schemes for gradient flows J Shen, J Xu, J Yang SIAM Review 61 (3), 474-506, 2019 | 530 | 2019 |
On the maximum principle preserving schemes for the generalized Allen–Cahn equation J Shen, T Tang, J Yang Communications in Mathematical Sciences 14 (6), 1517-1534, 2016 | 153 | 2016 |
Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle T Tang, J Yang Journal of Computational Mathematics, 451-461, 2016 | 140 | 2016 |
Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations T Hou, T Tang, J Yang Journal of Scientific Computing 72, 1214-1231, 2017 | 138 | 2017 |
Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models X Feng, T Tang, J Yang East Asian Journal on Applied Mathematics 3 (1), 59-80, 2013 | 120 | 2013 |
Long Time Numerical Simulations for Phase-Field Problems Using -Adaptive Spectral Deferred Correction Methods X Feng, T Tang, J Yang SIAM Journal on Scientific Computing 37 (1), A271-A294, 2015 | 110 | 2015 |
NONLINEAR STABILITY OF THE IMPLICIT-EXPLICIT METHODS FOR THE ALLEN-CAHN EQUATION. X Feng, H Song, T Tang, J Yang Inverse Problems & Imaging 7 (3), 2013 | 97 | 2013 |
Time-fractional Allen–Cahn equations: analysis and numerical methods Q Du, J Yang, Z Zhou Journal of Scientific Computing 85 (2), 42, 2020 | 95 | 2020 |
Asymptotically compatible Fourier spectral approximations of nonlocal Allen--Cahn equations Q Du, J Yang SIAM Journal on Numerical Analysis 54 (3), 1899-1919, 2016 | 69 | 2016 |
Maximum bound principle preserving integrating factor Runge–Kutta methods for semilinear parabolic equations L Ju, X Li, Z Qiao, J Yang Journal of Computational Physics 439, 110405, 2021 | 64 | 2021 |
Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations B Li, J Yang, Z Zhou SIAM Journal on Scientific Computing 42 (6), A3957-A3978, 2020 | 59 | 2020 |
Analysis of a nonlocal-in-time parabolic equation Q Du, J Yang, Z Zhou Discrete Contin. Dyn. Syst. Ser. B 22 (2), 339-368, 2017 | 46 | 2017 |
Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications Q Du, J Yang Journal of Computational Physics 332, 118-134, 2017 | 45 | 2017 |
Energy-decreasing exponential time differencing Runge–Kutta methods for phase-field models Z Fu, J Yang Journal of Computational Physics 454, 110943, 2022 | 40 | 2022 |
How to define dissipation-preserving energy for time-fractional phase-field equations C Quan, T Tang, J Yang arXiv preprint arXiv:2007.14855, 2020 | 40 | 2020 |
Artificial boundary conditions for nonlocal heat equations on unbounded domain W Zhang, J Yang, J Zhang, Q Du Communications in Computational Physics 21 (1), 16-39, 2017 | 38 | 2017 |
UNIFORM Lp-BOUND OF THE ALLEN-CAHN EQUATION AND ITS NUMERICAL DISCRETIZATION. J Yang, Q Du, W Zhang International Journal of Numerical Analysis & Modeling 15, 2018 | 37 | 2018 |
Asymptotically compatible discretization of multidimensional nonlocal diffusion models and approximation of nonlocal Green’s functions Q Du, Y Tao, X Tian, J Yang IMA Journal of numerical analysis 39 (2), 607-625, 2019 | 34 | 2019 |
Robust a posteriori stress analysis for quadrature collocation approximations of nonlocal models via nonlocal gradients Q Du, Y Tao, X Tian, J Yang Computer Methods in Applied Mechanics and Engineering 310, 605-627, 2016 | 32 | 2016 |