关注
Johannes Gasteiger, né Klicpera
Johannes Gasteiger, né Klicpera
其他姓名Johannes Klicpera, Johannes Gasteiger
在 google.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
J Gasteiger, A Bojchevski, S Günnemann
International Conference on Learning Representations (ICLR), 2019
1912*2019
Directional Message Passing for Molecular Graphs
J Gasteiger, J Groß, S Günnemann
International Conference on Learning Representations (ICLR), 2020
8412020
Diffusion Improves Graph Learning
J Gasteiger, S Weißenberger, S Günnemann
Advances in Neural Information Processing Systems (NeurIPS), 13354-13366, 2019
6842019
GemNet: Universal Directional Graph Neural Networks for Molecules
J Gasteiger, F Becker, S Günnemann
Advances in Neural Information Processing Systems (NeurIPS), 2021
412*2021
Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules
J Gasteiger, S Giri, JT Margraf, S Günnemann
Machine Learning for Molecules Workshop at NeurIPS, 2020
3292020
Scaling Graph Neural Networks with Approximate PageRank
A Bojchevski, J Gasteiger, B Perozzi, A Kapoor, M Blais, B Rózemberczki, ...
26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2020
2732020
Collective Robustness Certificates: Exploiting Interdependence in Graph Neural Networks
J Schuchardt, A Bojchevski, J Gasteiger, S Günnemann
International Conference on Learning Representations (ICLR), 2021
157*2021
Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images and More
A Bojchevski, J Gasteiger, S Günnemann
Thirty-seventh International Conference on Machine Learning (ICML), 2020
812020
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
J Gasteiger, M Shuaibi, A Sriram, S Günnemann, ZW Ulissi, CL Zitnick, ...
Transactions on Machine Learning Research, 2022
66*2022
How robust are modern graph neural network potentials in long and hot molecular dynamics simulations?
S Stocker, J Gasteiger, F Becker, S Günnemann, JT Margraf
Machine Learning: Science and Technology 3 (4), 045010, 2022
642022
Directional Message Passing on Molecular Graphs via Synthetic Coordinates
J Gasteiger, C Yeshwanth, S Günnemann
Advances in Neural Information Processing Systems (NeurIPS), 2021
342021
Is PageRank All You Need for Scalable Graph Neural Networks?
A Bojchevski, J Klicpera, B Perozzi, M Blais, A Kapoor, M Lukasik, ...
ACM SIGKDD, MLG Workshop, 2019
252019
Ewald-based Long-Range Message Passing for Molecular Graphs
A Kosmala, J Gasteiger, N Gao, S Günnemann
International Conference on Machine Learning (ICML), 2023
152023
Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More
J Gasteiger, M Lienen, S Günnemann
International Conference on Machine Learning, 5616-5627, 2021
122021
Influence-Based Mini-Batching for Graph Neural Networks
J Gasteiger, C Qian, S Günnemann
Learning on Graphs Conference, 2022
112022
Attacking Large Language Models with Projected Gradient Descent
S Geisler, T Wollschläger, MHI Abdalla, J Gasteiger, S Günnemann
arXiv preprint arXiv:2402.09154, 2024
102024
Challenges with unsupervised LLM knowledge discovery
S Farquhar, V Varma, Z Kenton, J Gasteiger, V Mikulik, R Shah
arXiv preprint arXiv:2312.10029, 2023
72023
SubMix: Learning to Mix Graph Sampling Heuristics
S Abu-El-Haija, JV Dillon, B Fatemi, K Axiotis, N Bulut, J Gasteiger, ...
Uncertainty in Artificial Intelligence, 1-10, 2023
52023
Nanowire Laser Structure and Fabrication Method
B Mayer, G Koblmueller, J Finley, J Klicpera, G Abstreiter
US Patent App. 15/759,977, 2018
52018
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
FE Kelvinius, D Georgiev, AP Toshev, J Gasteiger
Advances in Neural Information Processing Systems (NeurIPS), 2023
2*2023
系统目前无法执行此操作,请稍后再试。
文章 1–20