Numerical solution of time fractional diffusion systems K Burrage, A Cardone, R D'Ambrosio, B Paternoster Applied Numerical Mathematics 116, 82-94, 2017 | 66 | 2017 |
Two-step almost collocation methods for ordinary differential equations R D’Ambrosio, M Ferro, Z Jackiewicz, B Paternoster Numerical Algorithms 53 (2), 195-217, 2010 | 66 | 2010 |
Two-step hybrid collocation methods for y ″= f (x, y) R D’Ambrosio, M Ferro, B Paternoster Applied Mathematics Letters 22 (7), 1076-1080, 2009 | 59 | 2009 |
Drift-preserving numerical integrators for stochastic Hamiltonian systems C Chen, D Cohen, R D’Ambrosio, A Lang Advances in Computational Mathematics 46, 1-22, 2020 | 58 | 2020 |
Exponentially fitted two-step hybrid methods for y ″= f (x, y) R D’Ambrosio, E Esposito, B Paternoster Journal of Computational and Applied Mathematics 235 (16), 4888-4897, 2011 | 57 | 2011 |
Adapted numerical methods for advection–reaction–diffusion problems generating periodic wavefronts R D’Ambrosio, M Moccaldi, B Paternoster Computers & Mathematics with Applications 74 (5), 1029-1042, 2017 | 54 | 2017 |
Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations R D’Ambrosio, M Ferro, B Paternoster Mathematics and computers in simulation 81 (5), 1068-1084, 2011 | 49 | 2011 |
Numerical preservation of long-term dynamics by stochastic two-step methods R D’Ambrosio, M Moccaldi, B Paternoster Discr. Cont. Dyn. Sys.-B 23 (7), 2763-2773, 2018 | 47 | 2018 |
Long-term stability of multi-value methods for ordinary differential equations R D’Ambrosio, E Hairer Journal of Scientific Computing 60, 627-640, 2014 | 47 | 2014 |
Numerical solution of a diffusion problem by exponentially fitted finite difference methods R D’Ambrosio, B Paternoster SpringerPlus 3 (1), 425, 2014 | 47 | 2014 |
Revised exponentially fitted Runge–Kutta–Nyström methods R D’Ambrosio, B Paternoster, G Santomauro Applied Mathematics Letters 30, 56-60, 2014 | 47 | 2014 |
Construction of the EF-based Runge–Kutta methods revisited R D'Ambrosio, LG Ixaru, B Paternoster Computer Physics Communications 182 (2), 322-329, 2011 | 46 | 2011 |
Continuous two-step Runge–Kutta methods for ordinary differential equations R D’Ambrosio, Z Jackiewicz Numerical Algorithms 54, 169-193, 2010 | 46 | 2010 |
Exponentially fitted IMEX methods for advection–diffusion problems A Cardone, R D'Ambrosio, B Paternoster Journal of Computational and Applied Mathematics 316, 100-108, 2017 | 45 | 2017 |
On the stability of ϑ-methods for stochastic Volterra integral equations D Conte, R D’Ambrosio, B Paternoster Discr. Cont. Dyn. Sys.-Series B 23 (7), 2695-2708, 2018 | 44 | 2018 |
Exponentially fitted two-step Runge–Kutta methods: construction and parameter selection R D’Ambrosio, E Esposito, B Paternoster Applied Mathematics and Computation 218 (14), 7468-7480, 2012 | 44 | 2012 |
A spectral method for stochastic fractional differential equations A Cardone, R D'Ambrosio, B Paternoster Applied Numerical Mathematics 139, 115-119, 2019 | 43 | 2019 |
Construction and implementation of highly stable two-step continuous methods for stiff differential systems R D’Ambrosio, Z Jackiewicz Mathematics and Computers in Simulation 81 (9), 1707-1728, 2011 | 43 | 2011 |
Two-step diagonally-implicit collocation based methods for Volterra integral equations D Conte, R DʼAmbrosio, B Paternoster Applied Numerical Mathematics 62 (10), 1312-1324, 2012 | 41 | 2012 |
Two-step Runge-Kutta methods with quadratic stability functions D Conte, R D’Ambrosio, Z Jackiewicz Journal of Scientific Computing 44 (2), 191-218, 2010 | 40 | 2010 |