Parametric and model uncertainties induced by reduced order chemical mechanisms for biogas combustion RSM Freitas, FA Rochinha, D Mira, X Jiang Chemical Engineering Science 227, 115949, 2020 | 17 | 2020 |
Towards predicting liquid fuel physicochemical properties using molecular dynamics guided machine learning models RSM Freitas, ÁPF Lima, C Chen, FA Rochinha, D Mira, X Jiang Fuel 329, 125415, 2022 | 13 | 2022 |
An encoder-decoder deep surrogate for reverse time migration in seismic imaging under uncertainty RSM Freitas, CHS Barbosa, GM Guerra, ALGA Coutinho, FA Rochinha Computational Geosciences 25, 1229-1250, 2021 | 10 | 2021 |
Model identification in reactor-based combustion closures using sparse symbolic regression RSM Freitas, A Péquin, RM Galassi, A Attili, A Parente Combustion and Flame 255, 112925, 2023 | 7 | 2023 |
A predictive physics-aware hybrid reduced order model for reacting flows A Corrochano, RSM Freitas, A Parente, SL Clainche arXiv preprint arXiv:2301.09860, 2023 | 5 | 2023 |
Deep learning dynamical latencies for the analysis and reduction of combustion chemistry kinetics L Castellanos, R SM Freitas, A Parente, F Contino Physics of Fluids 35 (10), 2023 | 3 | 2023 |
Constructing accurate phenomenological surrogate for fluid structure interaction models GM Guerra, R Freitas, FA Rochinha Proceedings of the 10th International Conference on Rotor Dynamics–IFToMM …, 2019 | 3 | 2019 |
Descriptors-based machine-learning prediction of cetane number using quantitative structure–property relationship RSM Freitas, X Jiang Energy and AI, 100385, 2024 | 1 | 2024 |
An embedded deep learning model discrepancy for computational combustion simulations RSM Freitas, FA Rochinha Journal of the Brazilian Society of Mechanical Sciences and Engineering 46 …, 2024 | | 2024 |
Liquid synthetic fuels design guided by chemical structure: A machine learning perspective RSM Freitas, C Chen, X Jiang Applied Energy Innovation Institute (AEii), 2024 | | 2024 |
A Predictive Physics-Aware Machine Learning Model for Reacting Flows Check for updates A Corrochano, RSM Freitas, A Parente, D Soledad Le Clainche New Technologies and Developments in Unmanned Systems: Proceedings of the …, 2023 | | 2023 |
Application of β-variational autoencoders to develop digital twin of a furnace operating in MILD combustion R Da Silva Machado De Freitas, A Procacci, R Malpica Galassi, A Parente Math 2 Product (M2P), 2023 | | 2023 |
A time-lag autoencoder reduced-order model to predict combustion chemical kinetics L Castellanos, R Da Silva Machado De Freitas, A Parente, F Contino 45th Meeting of the Italian Section of the Combustion Institute, 2023 | | 2023 |
Enhancement of Subgrid-Scale Turbulence-Chemistry Interaction Physics-Based Models: A Data-Driven Perspective R Da Silva Machado De Freitas, A Pequin, R Malpica Galassi, A Parente IACM COMPUTATIONAL FLUIDS CONFERENCE (CFC2023), 2023 | | 2023 |
Deep Learning for the Computational Simulation of Pollutant Transport: an Error Model Perspective J Honigbaum, R Da Silva Machado De Freitas, G Guerra, S Zio, ... IACM COMPUTATIONAL FLUIDS CONFERENCE (CFC2023), 2023 | | 2023 |
Transformers Surrogates for Vortex-Induced Vibrations Computational Simulations J Honigbaum, FA Rochinha, R Da Silva Machado De Freitas XIX International Symposium on Dynamic Problems of Mechanics, 2023 | | 2023 |
A Predictive Physics-Aware Machine Learning Model for Reacting Flows A Corrochano, RSM Freitas, A Parente, S Le Clainche International Symposium on Unmanned Systems and The Defense Industry, 75-79, 2022 | | 2022 |
Enhancement of turbulence combustion models via machine learning R Da Silva Machado De Freitas, A Pequin, R Malpica Galassi, A Parente 18th International Conference on Numerical Combustion, 2022 | | 2022 |
Critical Analysis of Physics-Aware Deep Learning Surrogates for Reverse Time Migration FA Rochinha, R Freitas, A Coutinho, C Alves, C Barbosa, D Pina, ... 2022 SIAM Conference on Uncertainty Quantification, 2022 | | 2022 |
Prediction of liquid fuel properties using machine learning models with Gaussian processes and probabilistic conditional generative learning RSM Freitas, ÁPF Lima, C Chen, FA Rochinha, D Mira, X Jiang arXiv preprint arXiv:2110.09360, 2021 | | 2021 |