关注
Rodolfo Freitas
Rodolfo Freitas
其他姓名Rodolfo da Silva Machado de Freitas, Rodolfo S. M. Freitas
Queen Mary University of London, Université Libre de Bruxelles, UFRJ
在 qmul.ac.uk 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Parametric and model uncertainties induced by reduced order chemical mechanisms for biogas combustion
RSM Freitas, FA Rochinha, D Mira, X Jiang
Chemical Engineering Science 227, 115949, 2020
172020
Towards predicting liquid fuel physicochemical properties using molecular dynamics guided machine learning models
RSM Freitas, ÁPF Lima, C Chen, FA Rochinha, D Mira, X Jiang
Fuel 329, 125415, 2022
132022
An encoder-decoder deep surrogate for reverse time migration in seismic imaging under uncertainty
RSM Freitas, CHS Barbosa, GM Guerra, ALGA Coutinho, FA Rochinha
Computational Geosciences 25, 1229-1250, 2021
102021
Model identification in reactor-based combustion closures using sparse symbolic regression
RSM Freitas, A Péquin, RM Galassi, A Attili, A Parente
Combustion and Flame 255, 112925, 2023
72023
A predictive physics-aware hybrid reduced order model for reacting flows
A Corrochano, RSM Freitas, A Parente, SL Clainche
arXiv preprint arXiv:2301.09860, 2023
52023
Deep learning dynamical latencies for the analysis and reduction of combustion chemistry kinetics
L Castellanos, R SM Freitas, A Parente, F Contino
Physics of Fluids 35 (10), 2023
32023
Constructing accurate phenomenological surrogate for fluid structure interaction models
GM Guerra, R Freitas, FA Rochinha
Proceedings of the 10th International Conference on Rotor Dynamics–IFToMM …, 2019
32019
Descriptors-based machine-learning prediction of cetane number using quantitative structure–property relationship
RSM Freitas, X Jiang
Energy and AI, 100385, 2024
12024
An embedded deep learning model discrepancy for computational combustion simulations
RSM Freitas, FA Rochinha
Journal of the Brazilian Society of Mechanical Sciences and Engineering 46 …, 2024
2024
Liquid synthetic fuels design guided by chemical structure: A machine learning perspective
RSM Freitas, C Chen, X Jiang
Applied Energy Innovation Institute (AEii), 2024
2024
A Predictive Physics-Aware Machine Learning Model for Reacting Flows Check for updates
A Corrochano, RSM Freitas, A Parente, D Soledad Le Clainche
New Technologies and Developments in Unmanned Systems: Proceedings of the …, 2023
2023
Application of β-variational autoencoders to develop digital twin of a furnace operating in MILD combustion
R Da Silva Machado De Freitas, A Procacci, R Malpica Galassi, A Parente
Math 2 Product (M2P), 2023
2023
A time-lag autoencoder reduced-order model to predict combustion chemical kinetics
L Castellanos, R Da Silva Machado De Freitas, A Parente, F Contino
45th Meeting of the Italian Section of the Combustion Institute, 2023
2023
Enhancement of Subgrid-Scale Turbulence-Chemistry Interaction Physics-Based Models: A Data-Driven Perspective
R Da Silva Machado De Freitas, A Pequin, R Malpica Galassi, A Parente
IACM COMPUTATIONAL FLUIDS CONFERENCE (CFC2023), 2023
2023
Deep Learning for the Computational Simulation of Pollutant Transport: an Error Model Perspective
J Honigbaum, R Da Silva Machado De Freitas, G Guerra, S Zio, ...
IACM COMPUTATIONAL FLUIDS CONFERENCE (CFC2023), 2023
2023
Transformers Surrogates for Vortex-Induced Vibrations Computational Simulations
J Honigbaum, FA Rochinha, R Da Silva Machado De Freitas
XIX International Symposium on Dynamic Problems of Mechanics, 2023
2023
A Predictive Physics-Aware Machine Learning Model for Reacting Flows
A Corrochano, RSM Freitas, A Parente, S Le Clainche
International Symposium on Unmanned Systems and The Defense Industry, 75-79, 2022
2022
Enhancement of turbulence combustion models via machine learning
R Da Silva Machado De Freitas, A Pequin, R Malpica Galassi, A Parente
18th International Conference on Numerical Combustion, 2022
2022
Critical Analysis of Physics-Aware Deep Learning Surrogates for Reverse Time Migration
FA Rochinha, R Freitas, A Coutinho, C Alves, C Barbosa, D Pina, ...
2022 SIAM Conference on Uncertainty Quantification, 2022
2022
Prediction of liquid fuel properties using machine learning models with Gaussian processes and probabilistic conditional generative learning
RSM Freitas, ÁPF Lima, C Chen, FA Rochinha, D Mira, X Jiang
arXiv preprint arXiv:2110.09360, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–20