Overview of first Wendelstein 7-X high-performance operation T Klinger, T Andreeva, S Bozhenkov, C Brandt, R Burhenn, B Buttenschön, ... Nuclear Fusion 59 (11), 112004, 2019 | 260 | 2019 |
Major results from the first plasma campaign of the Wendelstein 7-X stellarator RC Wolf, A Ali, A Alonso, J Baldzuhn, C Beidler, M Beurskens, ... Nuclear Fusion 57 (10), 102020, 2017 | 215 | 2017 |
Bright quasi-phase-matched soft-x-ray harmonic radiation from argon ions M Zepf, B Dromey, M Landreman, P Foster, SM Hooker Physical review letters 99 (14), 143901, 2007 | 160 | 2007 |
Performance and properties of the first plasmas of Wendelstein 7-X T Klinger, A Alonso, S Bozhenkov, R Burhenn, A Dinklage, G Fuchert, ... Plasma Physics and Controlled Fusion 59 (1), 014018, 2016 | 152 | 2016 |
Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1: 100,000 TS Pedersen, M Otte, S Lazerson, P Helander, S Bozhenkov, ... Nature communications 7 (1), 13493, 2016 | 146 | 2016 |
Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas M Landreman, HM Smith, A Mollén, P Helander Physics of Plasmas 21 (4), 2014 | 113 | 2014 |
Magnetic fields with precise quasisymmetry for plasma confinement M Landreman, E Paul Physical Review Letters 128 (3), 035001, 2022 | 101 | 2022 |
Generation of a train of ultrashort pulses from a compact birefringent crystal array B Dromey, M Zepf, M Landreman, K O'keeffe, T Robinson, SM Hooker Applied optics 46 (22), 5142-5146, 2007 | 91 | 2007 |
Numerical calculation of the runaway electron distribution function and associated synchrotron emission M Landreman, A Stahl, T Fülöp Computer Physics Communications 185 (3), 847-855, 2014 | 90 | 2014 |
Improved understanding of physics processes in pedestal structure, leading to improved predictive capability for ITER RJ Groebner, CS Chang, JW Hughes, R Maingi, PB Snyder, XQ Xu, ... Nuclear Fusion 53 (9), 093024, 2013 | 89 | 2013 |
An improved current potential method for fast computation of stellarator coil shapes M Landreman Nuclear Fusion 57 (4), 046003, 2017 | 86 | 2017 |
Electrostatic potential variation on the flux surface and its impact on impurity transport JM García-Regaña, CD Beidler, R Kleiber, P Helander, A Mollén, ... Nuclear Fusion 57 (5), 056004, 2017 | 84 | 2017 |
Spheromak merging and field reversed configuration formation at the Swarthmore Spheromak Experiment CD Cothran, A Falk, A Fefferman, M Landreman, MR Brown, MJ Schaffer Physics of Plasmas 10 (5), 1748-1754, 2003 | 83 | 2003 |
SIMSOPT: a flexible framework for stellarator optimization M Landreman, B Medasani, F Wechsung, A Giuliani, R Jorge, C Zhu Journal of Open Source Software 6 (65), 3525, 2021 | 73 | 2021 |
Kinetic modelling of runaway electrons in dynamic scenarios A Stahl, O Embréus, G Papp, M Landreman, T Fülöp Nuclear Fusion 56 (11), 112009, 2016 | 72 | 2016 |
Omnigenity as generalized quasisymmetry M Landreman, PJ Catto Physics of Plasmas 19 (5), 2012 | 72 | 2012 |
Core radial electric field and transport in Wendelstein 7-X plasmas NA Pablant, A Langenberg, A Alonso, CD Beidler, M Bitter, S Bozhenkov, ... Physics of Plasmas 25 (2), 2018 | 70 | 2018 |
Generalized Ohm's law in a 3‐D reconnection experiment CD Cothran, M Landreman, MR Brown, WH Matthaeus Geophysical research letters 32 (3), 2005 | 69 | 2005 |
Direct construction of optimized stellarator shapes. Part 1. Theory in cylindrical coordinates M Landreman, W Sengupta Journal of Plasma Physics 84 (6), 905840616, 2018 | 64 | 2018 |
Synchrotron radiation from a runaway electron distribution in tokamaks A Stahl, M Landreman, G Papp, E Hollmann, T Fülöp Physics of Plasmas 20 (9), 2013 | 63 | 2013 |