Hypershot: Few-shot learning by kernel hypernetworks M Sendera, M Przewięźlikowski, K Karanowski, M Zięba, J Tabor, ... Proceedings of the IEEE/CVF winter conference on applications of computer …, 2023 | 21 | 2023 |
Non-gaussian gaussian processes for few-shot regression M Sendera, J Tabor, A Nowak, A Bedychaj, M Patacchiola, T Trzcinski, ... Advances in Neural Information Processing Systems 34, 10285-10298, 2021 | 17 | 2021 |
Supermodeling: the next level of abstraction in the use of data assimilation M Sendera, GS Duane, W Dzwinel Computational Science–ICCS 2020: 20th International Conference, Amsterdam …, 2020 | 9 | 2020 |
Hybrid swarm and agent-based evolutionary optimization L Placzkiewicz, M Sendera, A Szlachta, M Paciorek, A Byrski, ... Computational Science–ICCS 2018: 18th International Conference, Wuxi, China …, 2018 | 8 | 2018 |
On diffusion models for amortized inference: Benchmarking and improving stochastic control and sampling M Sendera, M Kim, S Mittal, P Lemos, L Scimeca, J Rector-Brooks, ... arXiv preprint arXiv:2402.05098, 2024 | 6 | 2024 |
Data adaptation in handy economy-ideology model M Sendera arXiv preprint arXiv:1904.04309, 2019 | 6 | 2019 |
Iterated denoising energy matching for sampling from Boltzmann densities T Akhound-Sadegh, J Rector-Brooks, AJ Bose, S Mittal, P Lemos, CH Liu, ... arXiv preprint arXiv:2402.06121, 2024 | 5 | 2024 |
Oneflow: One-class flow for anomaly detection based on a minimal volume region Ł Maziarka, M Śmieja, M Sendera, Ł Struski, J Tabor, P Spurek IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (11), 8508 …, 2021 | 4 | 2021 |
The general framework for few-shot learning by kernel HyperNetworks M Sendera, M Przewiȩźlikowski, J Miksa, M Rajski, K Karanowski, ... Machine Vision and Applications 34 (4), 53, 2023 | 3 | 2023 |
Flow-based anomaly detection L Maziarka, M Smieja, M Sendera, L Struski, J Tabor, P Spurek CoRR, vol. abs/2010.03002, 2020 | 2 | 2020 |
Amortizing intractable inference in diffusion models for vision, language, and control S Venkatraman, M Jain, L Scimeca, M Kim, M Sendera, M Hasan, L Rowe, ... arXiv preprint arXiv:2405.20971, 2024 | | 2024 |
Early detection and diagnosis of cancer with interpretable machine learning to uncover cancer-specific DNA methylation patterns I Newsham, M Sendera, SG Jammula, SA Samarajiwa Biology Methods and Protocols 9 (1), 2024 | | 2024 |
Missing Glow Phenomenon: Learning Disentangled Representation of Missing Data M Sendera, Ł Struski, P Spurek International Conference on Neural Information Processing, 196-204, 2021 | | 2021 |
Flow-based SVDD for anomaly detection M Sendera, M Śmieja, Ł Maziarka, Ł Struski, P Spurek, J Tabor arXiv preprint arXiv:2108.04907, 2021 | | 2021 |
Machine Classification of Methylomes in Cancer I Newsham, M Sendera, SG Jammula, R Fitzgerald, C Massie, ... bioRxiv, 2020.04. 04.025155, 2020 | | 2020 |
HyperShot: Few-Shot Learning by Kernel HyperNetworks–supplementary material M Sendera, M Przewiezlikowski, K Karanowski, M Zieba, J Tabor, ... | | |
Supermodeling: the second level of abstraction of data assimilation procedure M Sendera, G Duane, W Dzwinel | | |