Equivariant topological complexity H Colman, M Grant Algebraic & Geometric Topology 12 (4), 2299-2316, 2013 | 44 | 2013 |
Transverse Lusternik–Schnirelmann category of foliated manifolds H Colman, E Macias-Virgós Topology 40 (2), 419-430, 2001 | 29 | 2001 |
LS-category of compact Hausdorff foliations H Colman, S Hurder Transactions of the American Mathematical Society 356 (4), 1463-1487, 2004 | 24 | 2004 |
Equivariant LS-category for finite group actions H Colman Contemporary Mathematics 316, 35-40, 2002 | 21 | 2002 |
Tangential Lusternik–Schnirelmann category of foliations H Colman, E Macias-Virgós Journal of the London Mathematical Society 65 (3), 745-756, 2002 | 19 | 2002 |
LS-categories for foliated manifolds H Colman Foliations: geometry and dynamics, 17-28, 2002 | 16 | 2002 |
Categorıa LS en foliaciones H Colman Publicaciones del Departamento de Topologıa y Geometrıa, 1998 | 15 | 1998 |
On the 1-homotopy type of Lie groupoids H Colman Applied Categorical Structures 19, 393-423, 2011 | 11 | 2011 |
Tangential LS category and cohomology for foliations H Colman, S Hurder Contemporary Mathematics 316, 41-64, 2002 | 8 | 2002 |
Equivariant topological complexities A Angel, H Colman Topological complexity and related topics, Contemp. Math 702, 1-15, 2018 | 6 | 2018 |
The Lusternik-Schnirelmann category of a Lie groupoid H Colman Transactions of the American Mathematical Society 362 (10), 5529-5567, 2010 | 6 | 2010 |
Transverse Lusternik–Schnirelmann category of Riemannian foliations H Colman Topology and its Applications 141 (1-3), 187-196, 2004 | 6 | 2004 |
Morita Invariance of Equivariant Lusternik-Schnirelmann Category and Invariant Topological Complexity. JO A. Angel, H. Colman, M. Grant Theory and Applications of Categories, Vol. 35, 2020, No. 7, pp 179-195 …, 2020 | 5* | 2020 |
Local fibrewise category HC Vale Comptes Rendus de l'Académie des Sciences-Series I-Mathematics 324 (5), 549-552, 1997 | 5 | 1997 |
A Quillen model structure for orbifolds H Colman, C Costoya preprint, available online as http://faculty. ccc. edu/hcolman/dr. pdf, 2009 | 3 | 2009 |
Lusternik-Schnirelmann category of Orbifolds H Colman preprint, 2006 | 3 | 2006 |
Free and based path groupoids A Ángel, H Colman Algebraic & Geometric Topology 23 (5), 1959-2008, 2023 | 2 | 2023 |
G-category versus orbifold category A Ángel, H Colman | 2 | 2023 |
A Motion Planning Algorithm in a lollipop graph A Boughrira, H Colman arXiv preprint arXiv:1904.12806, 2019 | 2 | 2019 |
The Lusternik-Schnirelmann category for a differentiable stack S Alsulami, H Colman, F Neumann Mathematics Across Contemporary Sciences: AUS-ICMS, Sharjah, UAE, April 2015 …, 2017 | 2 | 2017 |