Vision-Language Pre-Training with Triple Contrastive Learning J Yang, J Duan, S Tran, Y Xu, S Chanda, L Chen, B Zeng, T Chilimbi, ... CVPR 2022, 2022 | 293 | 2022 |
Alice: Towards understanding adversarial learning for joint distribution matching C Li, H Liu, C Chen, Y Pu, L Chen, R Henao, L Carin Advances in neural information processing systems 30, 2017 | 282 | 2017 |
Contextualized perturbation for textual adversarial attack D Li, Y Zhang, H Peng, L Chen, C Brockett, MT Sun, B Dolan NAACL 2021, 2021 | 236 | 2021 |
Graph Optimal Transport for Cross-Domain Alignment L Chen, Z Gan, Y Cheng, L Li, L Carin, J Liu ICML 2020, 2020 | 185 | 2020 |
Adversarial text generation via feature-mover's distance L Chen, S Dai, C Tao, D Shen, Z Gan, H Zhang, Y Zhang, L Carin Advances in Neural Information Processing Systems 2018, 2018 | 169 | 2018 |
Triangle generative adversarial networks Z Gan, L Chen, W Wang, Y Pu, Y Zhang, H Liu, C Li, L Carin Advances in Neural Information Processing Systems, 5253-5262, 2017 | 161 | 2017 |
Wasserstein Contrastive Representation Distillation L Chen, Z Gan, D Wang, J Liu, R Henao, L Carin CVPR 2021, 2021 | 115 | 2021 |
Improving Sequence-to-Sequence Learning via Optimal Transport L Chen, Y Zhang, R Zhang, C Tao, Z Gan, H Zhang, B Li, D Shen, C Chen, ... International Conference on Learning Representations, 2019 | 102 | 2019 |
Adversarial symmetric variational autoencoder Y Pu, W Wang, R Henao, L Chen, Z Gan, C Li, L Carin Advances in neural information processing systems 30, 2017 | 95 | 2017 |
A unified particle-optimization framework for scalable Bayesian sampling C Chen, R Zhang, W Wang, B Li, L Chen arXiv preprint arXiv:1805.11659, 2018 | 86 | 2018 |
Symmetric variational autoencoder and connections to adversarial learning L Chen, S Dai, Y Pu, C Li, Q Su, L Carin AISTATS 2018, 2017 | 80 | 2017 |
Multi-modal Alignment using Representation Codebook J Duan, L Chen, S Tran, J Yang, Y Xu, B Zeng, C Tao, T Chilimbi CVPR 2022, 2022 | 66 | 2022 |
Towards generating long and coherent text with multi-level latent variable models D Shen, A Celikyilmaz, Y Zhang, L Chen, X Wang, J Gao, L Carin ACL 2019, 2019 | 64 | 2019 |
Continuous-time flows for efficient inference and density estimation C Chen, C Li, L Chen, W Wang, Y Pu, LC Duke International Conference on Machine Learning, 824-833, 2018 | 59 | 2018 |
Chi-square generative adversarial network C Tao, L Chen, R Henao, J Feng, L Carin International Conference on Machine Learning, 4894-4903, 2018 | 46 | 2018 |
Understanding and Constructing Latent Modality Structures in Multi-modal Representation Learning Q Jiang, C Chen, H Zhao, L Chen, Q Ping, SD Tran, Y Xu, B Zeng, ... CVPR 2023, 2023 | 37 | 2023 |
Variational inference and model selection with generalized evidence bounds L Chen, C Tao, R Zhang, R Henao, L Carin International Conference on Machine Learning, 892-901, 2018 | 33 | 2018 |
Improving Textual Network Embedding with Global Attention via Optimal Transport L Chen, G Wang, C Tao, D Shen, P Cheng, X Zhang, W Wang, Y Zhang, ... ACL 2019, 2019 | 29 | 2019 |
Simpler, faster, stronger: Breaking the log-k curse on contrastive learners with flatnce J Chen, Z Gan, X Li, Q Guo, L Chen, S Gao, T Chung, Y Xu, B Zeng, W Lu, ... arXiv preprint arXiv:2107.01152, 2021 | 28 | 2021 |
Why do we need large batchsizes in contrastive learning? a gradient-bias perspective C Chen, J Zhang, Y Xu, L Chen, J Duan, Y Chen, S Tran, B Zeng, ... Advances in Neural Information Processing Systems 35, 33860-33875, 2022 | 26 | 2022 |