Bacterial evolution of antibiotic hypersensitivity V Lázár, G Pal Singh, R Spohn, I Nagy, B Horváth, M Hrtyan, ... Molecular systems biology 9 (1), 700, 2013 | 345 | 2013 |
Antagonism between bacteriostatic and bactericidal antibiotics is prevalent PS Ocampo, V Lázár, B Papp, M Arnoldini, P Abel zur Wiesch, ... Antimicrobial agents and chemotherapy 58 (8), 4573-4582, 2014 | 330 | 2014 |
Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network V Lázár, I Nagy, R Spohn, B Csörgő, Á Györkei, Á Nyerges, B Horváth, ... Nature communications 5 (1), 4352, 2014 | 229 | 2014 |
State-of-the-art anonymization of medical records using an iterative machine learning framework G Szarvas, R Farkas, R Busa-Fekete Journal of the American Medical Informatics Association 14 (5), 574-580, 2007 | 190 | 2007 |
Boosting products of base classifiers B Kégl, R Busa-Fekete Proceedings of the 26th annual international conference on machine learning …, 2009 | 128 | 2009 |
Extreme f-measure maximization using sparse probability estimates K Jasinska, K Dembczynski, R Busa-Fekete, K Pfannschmidt, T Klerx, ... International conference on machine learning, 1435-1444, 2016 | 125 | 2016 |
Gossip-based distributed stochastic bandit algorithms B Szorenyi, R Busa-Fekete, I Hegedus, R Ormándi, M Jelasity, B Kégl International conference on machine learning, 19-27, 2013 | 118 | 2013 |
MultiBoost: a multi-purpose boosting package D Benbouzid, R Busa-Fekete, N Casagrande, FD Collin, B Kégl The Journal of Machine Learning Research 13 (1), 549-553, 2012 | 114 | 2012 |
A no-regret generalization of hierarchical softmax to extreme multi-label classification M Wydmuch, K Jasinska, M Kuznetsov, R Busa-Fekete, K Dembczynski Advances in neural information processing systems 31, 2018 | 101 | 2018 |
Online rank elicitation for plackett-luce: A dueling bandits approach B Szörényi, R Busa-Fekete, A Paul, E Hüllermeier Advances in neural information processing systems 28, 2015 | 98 | 2015 |
Preference-based online learning with dueling bandits: A survey V Bengs, R Busa-Fekete, A El Mesaoudi-Paul, E Hüllermeier Journal of Machine Learning Research 22 (7), 1-108, 2021 | 94 | 2021 |
Top-k selection based on adaptive sampling of noisy preferences R Busa-Fekete, B Szorenyi, W Cheng, P Weng, E Hüllermeier International Conference on Machine Learning, 1094-1102, 2013 | 91 | 2013 |
Fast classification using sparse decision DAGs D Benbouzid, R Busa-Fekete, B Kégl arXiv preprint arXiv:1206.6387, 2012 | 82 | 2012 |
Preference-based rank elicitation using statistical models: The case of mallows R Busa-Fekete, E Hüllermeier, B Szörényi International conference on machine learning, 1071-1079, 2014 | 78 | 2014 |
Preference-based reinforcement learning: evolutionary direct policy search using a preference-based racing algorithm R Busa-Fekete, B Szörényi, P Weng, W Cheng, E Hüllermeier Machine learning 97, 327-351, 2014 | 68 | 2014 |
Assessing the degree of nativeness and Parkinson's condition using Gaussian processes and deep rectifier neural networks T Grósz, R Busa-Fekete, G Gosztolya, L Tóth szte, 2015 | 64 | 2015 |
A survey of preference-based online learning with bandit algorithms R Busa-Fekete, E Hüllermeier Algorithmic Learning Theory: 25th International Conference, ALT 2014, Bled …, 2014 | 63 | 2014 |
Fast boosting using adversarial bandits R Busa-Fekete, B Kégl 27th International Conference on Machine Learning (ICML 2010), 143-150, 2010 | 61 | 2010 |
Detecting autism, emotions and social signals using AdaBoost G Gosztolya, R Busa-Fekete, L Tóth Interspeech, 2013 | 60 | 2013 |
Qualitative multi-armed bandits: A quantile-based approach B Szorenyi, R Busa-Fekete, P Weng, E Hüllermeier International Conference on Machine Learning, 1660-1668, 2015 | 54 | 2015 |