Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider K Zhou, N Xu, Z Xu, P Zhuang Phys. Rev. C 89 (2014), no.5, 054911, 2014 | 272 | 2014 |
An equation-of-state-meter of quantum chromodynamics transition from deep learning LG Pang, K Zhou, N Su, H Petersen, H Stöcker, XN Wang Nature communications 9 (2018), no.1, 210, 2018 | 140 | 2018 |
Regressive and generative neural networks for scalar field theory K Zhou, G Endrődi, LG Pang Phys. Rev. D 100 (2019), 011501(R), 2018 | 102 | 2018 |
Heavy flavors under extreme conditions in high energy nuclear collisions J Zhao, K Zhou, S Chen, P Zhuang Prog.Part.Nucl.Phys. 114 (2020) 103801, 2020 | 85 | 2020 |
Heavy ions at the Future Circular Collider A Dainese, UA Wiedemann, N Armesto, D d'Enterria, JM Jowett, ... CERN-TH-2016-107, 2016 | 84 | 2016 |
Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning YL Du, K Zhou, J Steinheimer, LG Pang, A Motornenko, HS Zong, ... The European Physical Journal C 80 (2020), 516, 2019 | 72 | 2019 |
A machine learning study to identify spinodal clumping in high energy nuclear collisions J Steinheimer, LG Pang, K Zhou, V Koch, J Randrup, H Stoecker JHEP 1912 (2019), 122, 2019 | 60 | 2019 |
Thermalization of gluons with Bose-Einstein condensation Zhe Xu, Kai Zhou, Pengfei Zhuang, Carsten Greiner Phys. Rev. Lett 114 (2015), no.18, 182301, 2015 | 56* | 2015 |
High energy nuclear physics meets Machine Learning WB He, YG Ma, LG Pang, H Song, K Zhou Nucl. Sci. Tech 34 (88), 2023 | 42 | 2023 |
Unsupervised outlier detection in heavy-ion collisions P Thaprasop, K Zhou, J Steinheimer, C Herold Physica Scripta 96 (6), 064003, 2021 | 42 | 2021 |
Nonequilibrium photon production in partonic transport simulations M Greif, F Senzel, H Kremer, K Zhou, C Greiner, Z Xu Phys. Rev. C 95 (2017), no.5, 054903, 2016 | 42 | 2016 |
ψ^\prime Production and B Decay in Heavy Ion Collisions at LHC Baoyi Chen, Yunpeng Liu, Kai Zhou, Pengfei Zhuang Phys. Lett. B 726 (4-5), 725–728, 2013 | 42* | 2013 |
Heavy quark potential in the quark-gluon plasma: Deep neural network meets lattice quantum chromodynamics S Shi, K Zhou, J Zhao, S Mukherjee, P Zhuang Physical Review D 105 (1), 014017, 2022 | 36 | 2022 |
A fast centrality-meter for heavy-ion collisions at the CBM experiment MO Kuttan, J Steinheimer, K Zhou, A Redelbach, H Stoecker Physics Letters B 811, 135872, 2020 | 36 | 2020 |
Thermal Charm and Charmonium Production in Quark Gluon Plasma Kai Zhou, Zhengyu Chen, Carsten Greiner, Pengfei Zhuang Phys. Lett. B 758 (2016), 434-439, 2016 | 36 | 2016 |
Exploring QCD matter in extreme conditions with Machine Learning K Zhou, L Wang, LG Pang, S Shi Progress in Particle and Nuclear Physics 135, 104084, 2024 | 35 | 2024 |
Continuum-extrapolated NNLO Valence PDF of Pion at the Physical Point X Gao, A D. Hanlon, N Karthik, S Mukherjee, P Petreczky, P Scior, S Shi, ... Physics Review D 106 (114510), 2022 | 32 | 2022 |
Υ Production in Heavy Ion Collisions at LHC K Zhou, N Xu, P Zhuang Nuclear Physics A 931, 654–658, 2014 | 32 | 2014 |
Neural network reconstruction of the dense matter equation of state from neutron star observables S Soma, L Wang, S Shi, H Stoecker, K Zhou Journal of Cosmology and Astroparticle Physics 8 (2022), 071, 2022 | 31 | 2022 |
Deep learning stochastic processes with QCD phase transition LJ Jiang, LX Wang, K Zhou Phys. Rev. D 103, 116023, 2021 | 31 | 2021 |