关注
Nicola Bodini
Nicola Bodini
在 nrel.gov 的电子邮件经过验证
标题
引用次数
引用次数
年份
The Perdigão: peering into microscale details of mountain winds
HJS Fernando, J Mann, J Palma, JK Lundquist, RJ Barthelmie, ...
Bulletin of the American Meteorological Society 100 (5), 799-819, 2019
1582019
Three-dimensional structure of wind turbine wakes as measured by scanning lidar
N Bodini, D Zardi, JK Lundquist
Atmospheric Measurement Techniques 10 (8), 2881-2896, 2017
892017
The second wind forecast improvement project (WFIP2): Observational field campaign
JM Wilczak, M Stoelinga, LK Berg, J Sharp, C Draxl, K McCaffrey, ...
Bulletin of the American Meteorological Society 100 (9), 1701-1723, 2019
80*2019
Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign
N Bodini, JK Lundquist, RK Newsom
Atmospheric Measurement Techniques 11 (7), 4291-4308, 2018
632018
US East Coast lidar measurements show offshore wind turbines will encounter very low atmospheric turbulence
N Bodini, JK Lundquist, A Kirincich
Geophysical Research Letters 46 (10), 5582-5591, 2019
602019
Spatial and temporal variability of turbulence dissipation rate in complex terrain
N Bodini, JK Lundquist, R Krishnamurthy, M Pekour, LK Berg, ...
Atmospheric Chemistry and Physics 19 (7), 4367-4382, 2019
402019
New methods to improve the vertical extrapolation of near-surface offshore wind speeds
M Optis, N Bodini, M Debnath, P Doubrawa
Wind Energy Science Discussions 2021, 1-26, 2021
372021
Wind plants can impact long-term local atmospheric conditions
N Bodini, JK Lundquist, P Moriarty
Scientific reports 11 (1), 22939, 2021
332021
Extreme wind shear events in US offshore wind energy areas and the role of induced stratification
M Debnath, P Doubrawa, M Optis, P Hawbecker, N Bodini
Wind Energy Science 6 (4), 1043-1059, 2021
322021
Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign
N Wildmann, N Bodini, JK Lundquist, L Bariteau, J Wagner
Atmospheric Measurement Techniques 12 (12), 6401-6423, 2019
292019
The importance of round-robin validation when assessing machine-learning-based vertical extrapolation of wind speeds
N Bodini, M Optis
Wind Energy Science 5 (2), 489-501, 2020
262020
Offshore wind turbines will encounter very low atmospheric turbulence
N Bodini, JK Lundquist, A Kirincich
Journal of Physics: Conference Series 1452 (1), 012023, 2020
242020
Can reanalysis products outperform mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?
V Pronk, N Bodini, M Optis, JK Lundquist, P Moriarty, C Draxl, ...
Wind Energy Science 7 (2), 487-504, 2022
202022
Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?
N Bodini, JK Lundquist, M Optis
Geoscientific Model Development 13 (9), 4271-4285, 2020
192020
offshore wind resource assessment for the California Pacific outer continental shelf
M Optis, O Rybchuk, N Bodini, M Rossol, W Musial
Strategic Partnership Project, National Renewable Energy Laboratory …, 2020
192020
The Perdigao: Peering into microscale details of mountain winds, B. Am. Meteorol. Soc., 100, 799–819
HJS Fernando, J Mann, J Palma, JK Lundquist, RJ Barthelmie, ...
192019
The sensitivity of the Fitch wind farm parameterization to a three-dimensional planetary boundary layer scheme
A Rybchuk, TW Juliano, JK Lundquist, D Rosencrans, N Bodini, M Optis
Wind Energy Science Discussions 2021, 1-39, 2021
172021
Design of the American Wake Experiment (AWAKEN) field campaign
M Debnath, AK Scholbrock, D Zalkind, P Moriarty, E Simley, N Hamilton, ...
Journal of Physics: Conference Series 2265 (2), 022058, 2022
142022
How accurate is a machine learning-based wind speed extrapolation under a round-robin approach?
N Bodini, M Optis
Journal of Physics: Conference Series 1618 (6), 062037, 2020
142020
Assessing boundary condition and parametric uncertainty in numerical-weather-prediction-modeled, long-term offshore wind speed through machine learning and analog ensemble
N Bodini, W Hu, M Optis, G Cervone, S Alessandrini
Wind Energy Science 6 (6), 1363-1377, 2021
122021
系统目前无法执行此操作,请稍后再试。
文章 1–20