关注
Pranav Kulkarni
Pranav Kulkarni
在 som.umaryland.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Economic and environmental costs of cloud technologies for medical imaging and radiology artificial intelligence
FX Doo, P Kulkarni, EL Siegel, M Toland, HY Paul, RC Carlos, VS Parekh
Journal of the American College of Radiology 21 (2), 248-256, 2024
102024
Privacy-Preserving Collaboration for Multi-Organ Segmentation via Federated Learning from Sites with Partial Labels
A Kanhere, P Kulkarni, PH Yi, VS Parekh
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
2*2024
Coarse race and ethnicity labels mask granular underdiagnosis disparities in deep learning models for chest radiograph diagnosis
P Bachina, SP Garin, P Kulkarni, A Kanhere, J Sulam, VS Parekh, PH Yi
Radiology 309 (2), e231693, 2023
22023
Surgical Aggregation: Federated Class-Heterogeneous Learning
P Kulkarni, A Kanhere, PH Yi, VS Parekh
arXiv preprint arXiv:2301.06683, 2023
2*2023
ISLE: An Intelligent Streaming Framework for High-Throughput AI Inference in Medical Imaging
P Kulkarni, A Kanhere, EL Siegel, PH Yi, VS Parekh
Journal of Imaging Informatics in Medicine, 1-14, 2024
1*2024
Text2Cohort: Facilitating Intuitive Access to Biomedical Data with Natural Language Cohort Discovery
P Kulkarni, A Kanhere, PH Yi, VS Parekh
arXiv preprint arXiv:2305.07637, 2023
1*2023
Optimizing Federated Learning for Medical Image Classification on Distributed Non-iid Datasets with Partial Labels
P Kulkarni, A Kanhere, PH Yi, VS Parekh
arXiv preprint arXiv:2303.06180, 2023
12023
From competition to collaboration: Making toy datasets on kaggle clinically useful for chest x-ray diagnosis using federated learning
P Kulkarni, A Kanhere, PH Yi, VS Parekh
arXiv preprint arXiv:2211.06212, 2022
12022
Expanding the Horizon: Enabling Hybrid Quantum Transfer Learning for Long-Tailed Chest X-Ray Classification
S Chan, P Kulkarni, PH Yi, VS Parekh
arXiv preprint arXiv:2405.00156, 2024
2024
Improving Multi-Center Generalizability of GAN-Based Fat Suppression using Federated Learning
P Kulkarni, A Kanhere, H Kukreja, V Zhang, PH Yi, VS Parekh
arXiv preprint arXiv:2404.07374, 2024
2024
Anytime, Anywhere, Anyone: Investigating the Feasibility of Segment Anything Model for Crowd-Sourcing Medical Image Annotations
P Kulkarni, A Kanhere, D Savani, A Chan, D Chatterjee, PH Yi, VS Parekh
arXiv preprint arXiv:2403.15218, 2024
2024
Hidden in Plain Sight: Undetectable Adversarial Bias Attacks on Vulnerable Patient Populations
P Kulkarni, A Chan, N Navarathna, S Chan, PH Yi, VS Parekh
arXiv preprint arXiv:2402.05713, 2024
2024
Using Deep Learning to Predict Knee Osteoarthritis
J Zhao, A Kanhere, P Kulkarni, D Chatterjee
2024
One Copy Is All You Need: Resource-Efficient Streaming of Medical Imaging Data at Scale
P Kulkarni, A Kanhere, E Siegel, PH Yi, VS Parekh
arXiv preprint arXiv:2307.00438, 2023
2023
Exploring Semantic Perturbations on Grover
P Kulkarni, Z Ji, Y Xu, M Neskovic, K Nolan
arXiv preprint arXiv:2302.00509, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–15