Differentiable Monte Carlo ray tracing through edge sampling TM Li, M Aittala, F Durand, J Lehtinen ACM Transactions on Graphics (TOG) 37 (6), 222, 2018 | 521 | 2018 |
Difftaichi: Differentiable programming for physical simulation Y Hu, L Anderson, TM Li, Q Sun, N Carr, J Ragan-Kelley, F Durand arXiv preprint arXiv:1910.00935, 2019 | 396 | 2019 |
Taichi: a language for high-performance computation on spatially sparse data structures Y Hu, TM Li, L Anderson, J Ragan-Kelley, F Durand ACM Transactions on Graphics (TOG) 38 (6), 1-16, 2019 | 275 | 2019 |
Learning to optimize halide with tree search and random programs A Adams, K Ma, L Anderson, R Baghdadi, TM Li, M Gharbi, B Steiner, ... ACM Transactions on Graphics (TOG) 38 (4), 1-12, 2019 | 258 | 2019 |
Differentiable vector graphics rasterization for editing and learning TM Li, M Lukáč, M Gharbi, J Ragan-Kelley ACM Transactions on Graphics (TOG) 39 (6), 1-15, 2020 | 185 | 2020 |
Differentiable programming for image processing and deep learning in Halide TM Li, M Gharbi, A Adams, F Durand, J Ragan-Kelley ACM Transactions on Graphics (TOG) 37 (4), 139, 2018 | 149 | 2018 |
SURE-based optimization for adaptive sampling and reconstruction TM Li, YT Wu, YY Chuang ACM Transactions on Graphics (TOG) 31 (6), 1-9, 2012 | 134 | 2012 |
Inverse path tracing for joint material and lighting estimation D Azinovic, TM Li, A Kaplanyan, M Nießner Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 133 | 2019 |
Sample-based Monte Carlo denoising using a kernel-splatting network M Gharbi, TM Li, M Aittala, J Lehtinen, F Durand ACM Transactions on Graphics (TOG) 38 (4), 1-12, 2019 | 93 | 2019 |
Unbiased warped-area sampling for differentiable rendering SP Bangaru, TM Li, F Durand ACM Transactions on Graphics (TOG) 39 (6), 1-18, 2020 | 92 | 2020 |
Anisotropic Gaussian mutations for Metropolis light transport through Hessian-Hamiltonian dynamics TM Li, J Lehtinen, R Ramamoorthi, W Jakob, F Durand ACM Transactions on Graphics (TOG) 34 (6), 209, 2015 | 48 | 2015 |
Physics-based differentiable rendering: from theory to implementation S Zhao, W Jakob, TM Li ACM siggraph 2020 courses, 1-30, 2020 | 46 | 2020 |
Systematically differentiating parametric discontinuities SP Bangaru, J Michel, K Mu, G Bernstein, TM Li, J Ragan-Kelley ACM Transactions on Graphics (TOG) 40 (4), 1-18, 2021 | 40 | 2021 |
Differentiable rendering of neural sdfs through reparameterization SP Bangaru, M Gharbi, F Luan, TM Li, K Sunkavalli, M Hasan, S Bi, Z Xu, ... SIGGRAPH Asia 2022 Conference Papers, 1-9, 2022 | 34 | 2022 |
Aether: An embedded domain specific sampling language for Monte Carlo rendering L Anderson, TM Li, J Lehtinen, F Durand ACM Transactions on Graphics (TOG) 36 (4), 1-16, 2017 | 23 | 2017 |
Efficient automatic scheduling of imaging and vision pipelines for the GPU L Anderson, A Adams, K Ma, TM Li, T Jin, J Ragan-Kelley Proceedings of the ACM on Programming Languages 5 (OOPSLA), 1-28, 2021 | 15 | 2021 |
Parameter-space ReSTIR for differentiable and inverse rendering W Chang, V Sivaram, D Nowrouzezahrai, T Hachisuka, R Ramamoorthi, ... ACM SIGGRAPH 2023 Conference Proceedings, 1-10, 2023 | 14 | 2023 |
Differentiable visual computing TM Li arXiv preprint arXiv:1904.12228, 2019 | 14 | 2019 |
Acting as inverse inverse planning K Chandra, TM Li, J Tenenbaum, J Ragan-Kelley Acm siggraph 2023 conference proceedings, 1-12, 2023 | 13 | 2023 |
Designing perceptual puzzles by differentiating probabilistic programs K Chandra, TM Li, J Tenenbaum, J Ragan-Kelley ACM SIGGRAPH 2022 Conference Proceedings, 1-9, 2022 | 13 | 2022 |