Linear inverse problems in imaging A Ribes, F Schmitt IEEE Signal Processing Magazine 25 (4), 84-99, 2008 | 187 | 2008 |
Calibration and spectral reconstruction for crisatel: an art painting multispectral acquisition system A Ribés, F Schmitt, R Pillay, C Lahanier Journal of Imaging Science and Technology 49 (6), 563-573, 2005 | 83 | 2005 |
High temporal resolution functional MRI using parallel echo volumar imaging C Rabrait, P Ciuciu, A Ribes, C Poupon, P Le Roux, G Dehaine‐Lambertz, ... Journal of Magnetic Resonance Imaging: An Official Journal of the …, 2008 | 56 | 2008 |
A fully automatic method for the reconstruction of spectral reflectance curves by using mixture density networks A Ribés, F Schmitt Pattern Recognition Letters 24 (11), 1691-1701, 2003 | 48 | 2003 |
Melissa: large scale in transit sensitivity analysis avoiding intermediate files T Terraz, A Ribes, Y Fournier, B Iooss, B Raffin Proceedings of the international conference for high performance computing …, 2017 | 42 | 2017 |
Studying that smile: A tutorial on multispectral imaging of paintings using the Mona Lisa by Leonardo da Vinci as a study case A Ribes, R Pillay, F Schmitt, C Lahanier Signal Processing Magazine, IEEE 25 (4), 14-26, 2008 | 42* | 2008 |
Multispectral analysis and spectral reflectance reconstruction of art paintings A Ribés École Nationale Supérieure des Télécommunications, 2003 | 38* | 2003 |
Color and multispectral imaging with the CRISATEL multispectral system A Ribés, H Brettel, F Schmitt, H Liang, J Cupitt, D Saunders IS&T PICS CONFERENCE, 215-219, 2003 | 35* | 2003 |
In-Situ Visualization in Fluid Mechanics using Catalyst: A Case Study for Code Saturne B Lorendeau, Y Fournier, A Ribes IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), 2013 | 34 | 2013 |
Reconstructing Spectral Reflectances of Oil Pigments with Neural Networks. A Ribés, F Schmitt, H Brettel 3rd Intl. Conf. Multispectral Color Science 6, 2001 | 19 | 2001 |
Visualizing results in the SALOME platform for large numerical simulations: an integration of ParaView A Ribes, A Bruneton IEEE symposium on Large Scale Data Analysis and Visualization (LDAV), 2014 | 15 | 2014 |
A visual sensitivity analysis for parameter-augmented ensembles of curves A Ribés, J Pouderoux, B Iooss Journal of Verification, Validation and Uncertainty Quantification 4 (4), 041007, 2019 | 9 | 2019 |
Eye-Dome Lighting: a non-photorealistic shading technique C Boucheny, A Ribes KSource, 2011 | 9 | 2011 |
In-Situ Visualization in Computational Fluid Dynamics Using Open-Source tools: Integration of Catalyst into Code_Saturne A Ribés, B Lorendeau, J Jomier, Y Fournier Topological and Statistical Methods for Complex Data: Tackling Large-Scale …, 2014 | 8 | 2014 |
Reconstructing spectral reflectances with mixture density networks A Ribés, F Schmit Proceedings of the CGIV, 486-491, 2002 | 7 | 2002 |
SALOME: An Open-source Simulation Platform Integrating ParaView A Ribes, A Bruneton, A Geay KSource, 2016 | 6 | 2016 |
High Throughput Training of Deep Surrogates from Large Ensemble Runs LT Meyer, M Schouler, RA Caulk, A Ribés, B Raffin Proceedings of the International Conference for High Performance Computing …, 2023 | 4 | 2023 |
Training deep surrogate models with large scale online learning LT Meyer, M Schouler, RA Caulk, A Ribes, B Raffin International Conference on Machine Learning, 24614-24630, 2023 | 4 | 2023 |
Melissa: coordinating large-scale ensemble runs for deep learning and sensitivity analyses M Schouler, RA Caulk, L Meyer, T Terraz, C Conrads, S Friedemann, ... Journal of Open Source Software 8 (86), 5291, 2023 | 4 | 2023 |
Deep Surrogate for Direct Time Fluid Dynamics L Meyer, L Pottier, A Ribes, B Raffin arXiv preprint arXiv:2112.10296, 2021 | 4 | 2021 |