受强制性开放获取政策约束的文章 - Mohammad Taha Toghani了解详情
可在其他位置公开访问的文章:10 篇
Unbounded gradients in federated learning with buffered asynchronous aggregation
MT Toghani, CA Uribe
2022 58th Annual Allerton Conference on Communication, Control, and …, 2022
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
Communication-efficient distributed cooperative learning with compressed beliefs
MT Toghani, CA Uribe
IEEE Transactions on Control of Network Systems 9 (3), 1215-1226, 2022
强制性开放获取政策: US National Institutes of Health
Scalable average consensus with compressed communications
MT Toghani, CA Uribe
2022 American Control Conference (ACC), 3412-3417, 2022
强制性开放获取政策: US National Institutes of Health
MP-Boost: Minipatch Boosting via Adaptive Feature and Observation Sampling
MT Toghani, GI Allen
2021 IEEE International Conference on Big Data and Smart Computing (BigComp …, 2021
强制性开放获取政策: US National Science Foundation, US National Institutes of Health
PersA-FL: personalized asynchronous federated learning
MT Toghani, S Lee, CA Uribe
Optimization Methods and Software, 1-38, 2023
强制性开放获取政策: US National Science Foundation
Pars-push: Personalized, asynchronous and robust decentralized optimization
MT Toghani, S Lee, CA Uribe
IEEE Control Systems Letters 7, 361-366, 2022
强制性开放获取政策: US National Institutes of Health
On first-order meta-reinforcement learning with moreau envelopes
MT Toghani, S Perez-Salazar, CA Uribe
2023 62nd IEEE Conference on Decision and Control (CDC), 4176-4181, 2023
强制性开放获取政策: US National Science Foundation
On arbitrary compression for decentralized consensus and stochastic optimization over directed networks
MT Toghani, CA Uribe
European Journal of Control 68, 100682, 2022
强制性开放获取政策: US National Institutes of Health
Local stochastic factored gradient descent for distributed quantum state tomography
JL Kim, MT Toghani, CA Uribe, A Kyrillidis
IEEE Control Systems Letters 7, 199-204, 2022
强制性开放获取政策: US National Science Foundation, US Department of Defense, US National …
Improving Denoising Diffusion Probabilistic Models via Exploiting Shared Representations
D Pirhayatifard, MT Toghani, G Balakrishnan, CA Uribe
2023 57th Asilomar Conference on Signals, Systems, and Computers, 789-793, 2023
强制性开放获取政策: US National Science Foundation
出版信息和资助信息由计算机程序自动确定