关注
Raoul Heese
Raoul Heese
Research Fellow at Fraunhofer ITWM
在 itwm.fraunhofer.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
Informed machine learning–a taxonomy and survey of integrating prior knowledge into learning systems
L Von Rueden, S Mayer, K Beckh, B Georgiev, S Giesselbach, R Heese, ...
IEEE Transactions on Knowledge and Data Engineering 35 (1), 614-633, 2021
7392021
Quantum optimization: Potential, challenges, and the path forward
A Abbas, A Ambainis, B Augustino, A Bärtschi, H Buhrman, C Coffrin, ...
arXiv preprint arXiv:2312.02279, 2023
542023
Wavelet-packets for deepfake image analysis and detection
M Wolter, F Blanke, R Heese, J Garcke
Machine Learning 111 (11), 4295-4327, 2022
342022
Feature selection on quantum computers
S Mücke, R Heese, S Müller, M Wolter, N Piatkowski
Quantum Machine Intelligence 5 (1), 11, 2023
272023
Optimized data exploration applied to the simulation of a chemical process
R Heese, M Walczak, T Seidel, N Asprion, M Bortz
Computers & Chemical Engineering 124, 326-342, 2019
262019
Using machine learning models to explore the solution space of large nonlinear systems underlying flowsheet simulations with constraints
PO Ludl, R Heese, J Höller, N Asprion, M Bortz
Frontiers of Chemical Science and Engineering 16 (2), 183-197, 2022
162022
Representation of binary classification trees with binary features by quantum circuits
R Heese, P Bickert, AE Niederle
Quantum 6, 676, 2022
122022
Gradient-free quantum optimization on NISQ devices
L Franken, B Georgiev, S Muecke, M Wolter, N Piatkowski, C Bauckhage
arXiv preprint arXiv:2012.13453, 2020
122020
Quantum optimization: Potential, challenges, and the path forward (2023)
A Abbas, A Ambainis, B Augustino, A Bärtschi, H Buhrman, C Coffrin, ...
arXiv preprint arXiv:2312.02279, 0
12
Informed machine learning-a taxonomy and survey of integrating knowledge into learning systems (2020)
L Von Rueden, S Mayer, K Beckh, B Georgiev, S Giesselbach, R Heese, ...
arXiv preprint arXiv:1903.12394, 1903
111903
The Good, the Bad and the Ugly: Augmenting a black-box model with expert knowledge
R Heese, M Walczak, L Morand, D Helm, M Bortz
Artificial Neural Networks and Machine Learning–ICANN 2019: Workshop and …, 2019
102019
Explaining quantum circuits with shapley values: Towards explainable quantum machine learning
R Heese, T Gerlach, S Mücke, S Müller, M Jakobs, N Piatkowski
arXiv preprint arXiv:2301.09138, 2023
82023
Quantum feature selection
S Mücke, R Heese, S Müller, M Wolter, N Piatkowski
82022
Entropic uncertainty relation for pointer-based simultaneous measurements of conjugate observables
R Heese, M Freyberger
Physical Review A—Atomic, Molecular, and Optical Physics 87 (1), 012123, 2013
72013
Quantum circuit evolution on nisq devices
L Franken, B Georgiev, S Mucke, M Wolter, R Heese, C Bauckhage, ...
2022 IEEE congress on evolutionary computation (CEC), 1-8, 2022
62022
Multiplicities in thermodynamic activity coefficients
J Werner, T Seidel, R Jafar, R Heese, H Hasse, M Bortz
AIChE Journal 69 (12), e18251, 2023
52023
An optimization case study for solving a transport robot scheduling problem on quantum-hybrid and quantum-inspired hardware
D Leib, T Seidel, S Jäger, R Heese, C Jones, A Awasthi, A Niederle, ...
Scientific Reports 13 (1), 18743, 2023
52023
Pointer-based simultaneous measurements of conjugate observables in a thermal environment
R Heese, M Freyberger
Physical Review A 89 (5), 052111, 2014
52014
On the effects of biased quantum random numbers on the initialization of artificial neural networks
R Heese, M Wolter, S Mücke, L Franken, N Piatkowski
Machine Learning 113 (3), 1189-1217, 2024
42024
Calibrated simplex-mapping classification
R Heese, J Schmid, M Walczak, M Bortz
PLoS One 18 (1), e0279876, 2023
42023
系统目前无法执行此操作,请稍后再试。
文章 1–20