Deep learning in spiking neural networks A Tavanaei, M Ghodrati, SR Kheradpisheh, T Masquelier, A Maida Neural networks 111, 47-63, 2019 | 1144 | 2019 |
STDP-based spiking deep convolutional neural networks for object recognition SR Kheradpisheh, M Ganjtabesh, SJ Thorpe, T Masquelier Neural Networks 99, 56-67, 2018 | 814 | 2018 |
Temporal backpropagation for spiking neural networks with one spike per neuron SR Kheradpisheh, T Masquelier International Journal of Neural Systems 30 (6), 2050027, 2020 | 231 | 2020 |
Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition SR Kheradpisheh, M Ghodrati, M Ganjtabesh, T Masquelier Scientific Reports 6, 32672, 2016 | 208 | 2016 |
First-spike-based visual categorization using reward-modulated STDP M Mozafari, SR Kheradpisheh, T Masquelier, A Nowzari-Dalini, ... IEEE transactions on neural networks and learning systems 29 (12), 6178-6190, 2018 | 181 | 2018 |
Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition SR Kheradpisheh, M Ganjtabesh, T Masquelier Neurocomputing 205, 382-392, 2016 | 140 | 2016 |
BS4NN: Binarized spiking neural networks with temporal coding and learning SR Kheradpisheh, M Mirsadeghi, T Masquelier Neural Processing Letters, 2021 | 70 | 2021 |
STiDi-BP: Spike time displacement based error backpropagation in multilayer spiking neural networks M Mirsadeghi, M Shalchian, SR Kheradpisheh, T Masquelier Neurocomputing 427, 131-140, 2021 | 68 | 2021 |
Humans and deep networks largely agree on which kinds of variation make object recognition harder SR Kheradpisheh, M Ghodrati, M Ganjtabesh, T Masquelier Frontiers in Computational Neuroscience 10 (74), 92, 2016 | 28 | 2016 |
Object categorization in finer levels relies more on higher spatial frequencies and takes longer MN Ashtiani, SR Kheradpisheh, T Masquelier, M Ganjtabesh Frontiers in psychology 8, 270155, 2017 | 24 | 2017 |
Mixture of feature specified experts SR Kheradpisheh, F Sharifizadeh, A Nowzari-Dalini, M Ganjtabesh, ... Information Fusion 20, 242-251, 2014 | 22 | 2014 |
Optimal localist and distributed coding of spatiotemporal spike patterns through STDP and coincidence detection T Masquelier, SR Kheradpisheh Frontiers in computational neuroscience 12, 74, 2018 | 20 | 2018 |
Spiking neural networks trained via proxy SR Kheradpisheh, M Mirsadeghi, T Masquelier IEEE Access 10, 70769-70778, 2022 | 15 | 2022 |
Combining classifiers using nearest decision prototypes SR Kheradpisheh, F Behjati-Ardakani, R Ebrahimpour Applied Soft Computing 13 (12), 4570-4578, 2013 | 14 | 2013 |
Spike time displacement-based error backpropagation in convolutional spiking neural networks M Mirsadeghi, M Shalchian, SR Kheradpisheh, T Masquelier Neural Computing and Applications 35 (21), 15891-15906, 2023 | 11 | 2023 |
Object categorization in visual periphery is modulated by delayed foveal noise F Ramezani, SR Kheradpisheh, SJ Thorpe, M Ghodrati Journal of Vision 19 (9), 1-1, 2019 | 11 | 2019 |
An evidence-based combining classifier for brain signal analysis SR Kheradpisheh, A Nowzari-Dalini, R Ebrahimpour, M Ganjtabesh PloS one 9 (1), e84341, 2014 | 10 | 2014 |
Multipath vit ocr: A lightweight visual transformer-based license plate optical character recognition A Azadbakht, SR Kheradpisheh, H Farahani 2022 12th International Conference on Computer and Knowledge Engineering …, 2022 | 5 | 2022 |
Imbalance factor: a simple new scale for measuring inter-class imbalance extent in classification problems M Pirizadeh, H Farahani, SR Kheradpisheh Knowledge and Information Systems 65 (10), 4157-4183, 2023 | 2 | 2023 |
BioLCNet: Reward-Modulated Locally Connected Spiking Neural Networks H Ghaemi, E Mirzaei, M Nouri, SR Kheradpisheh International Conference on Machine Learning, Optimization, and Data Science …, 2022 | 2 | 2022 |