Extracting training data from large language models N Carlini, F Tramer, E Wallace, M Jagielski, A Herbert-Voss, K Lee, ... 30th USENIX Security Symposium (USENIX Security 21), 2633-2650, 2021 | 1387 | 2021 |
PaLM 2 Technical Report R Anil, AM Dai, O Firat, M Johnson, D Lepikhin, A Passos, S Shakeri, ... arXiv preprint arXiv:2305.10403, 2023 | 1006 | 2023 |
Manipulating machine learning: Poisoning attacks and countermeasures for regression learning M Jagielski, A Oprea, B Biggio, C Liu, C Nita-Rotaru, B Li 2018 IEEE Symposium on Security and Privacy (SP), 19-35, 2018 | 929 | 2018 |
Quantifying Memorization Across Neural Language Models N Carlini, D Ippolito, M Jagielski, K Lee, F Tramer, C Zhang arXiv preprint arXiv:2202.07646, 2022 | 452 | 2022 |
Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks A Demontis, M Melis, M Pintor, M Jagielski, B Biggio, A Oprea, ... 28th {USENIX} Security Symposium ({USENIX} Security 19), 321-338, 2019 | 429 | 2019 |
High accuracy and high fidelity extraction of neural networks M Jagielski, N Carlini, D Berthelot, A Kurakin, N Papernot 29th USENIX security symposium (USENIX Security 20), 1345-1362, 2020 | 394 | 2020 |
Extracting training data from diffusion models N Carlini, J Hayes, M Nasr, M Jagielski, V Sehwag, F Tramèr, B Balle, ... arXiv preprint arXiv:2301.13188, 2023 | 357 | 2023 |
Auditing differentially private machine learning: How private is private sgd? M Jagielski, J Ullman, A Oprea Advances in Neural Information Processing Systems 33, 22205-22216, 2020 | 197 | 2020 |
Differentially private fair learning M Jagielski, M Kearns, J Mao, A Oprea, A Roth, S Sharifi-Malvajerdi, ... International Conference on Machine Learning, 3000-3008, 2019 | 168 | 2019 |
Are aligned neural networks adversarially aligned? N Carlini, M Nasr, CA Choquette-Choo, M Jagielski, I Gao, PWW Koh, ... Advances in Neural Information Processing Systems 36, 2024 | 146 | 2024 |
Cryptanalytic extraction of neural network models N Carlini, M Jagielski, I Mironov Advances in Cryptology–CRYPTO 2020: 40th Annual International Cryptology …, 2020 | 136 | 2020 |
Scalable Extraction of Training Data from (Production) Language Models M Nasr, N Carlini, J Hayase, M Jagielski, AF Cooper, D Ippolito, ... arXiv preprint arXiv:2311.17035, 2023 | 112 | 2023 |
Subpopulation data poisoning attacks M Jagielski, G Severi, N Pousette Harger, A Oprea Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications …, 2021 | 111 | 2021 |
Poisoning Web-Scale Training Datasets is Practical N Carlini, M Jagielski, CA Choquette-Choo, D Paleka, W Pearce, ... arXiv preprint arXiv:2302.10149, 2023 | 103 | 2023 |
Counterfactual memorization in neural language models C Zhang, D Ippolito, K Lee, M Jagielski, F Tramèr, N Carlini Advances in Neural Information Processing Systems 36, 39321-39362, 2023 | 94 | 2023 |
Truth serum: Poisoning machine learning models to reveal their secrets F Tramèr, R Shokri, A San Joaquin, H Le, M Jagielski, S Hong, N Carlini Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications …, 2022 | 88 | 2022 |
Preventing generation of verbatim memorization in language models gives a false sense of privacy D Ippolito, F Tramèr, M Nasr, C Zhang, M Jagielski, K Lee, ... Proceedings of the 16th International Natural Language Generation Conference …, 2023 | 84* | 2023 |
Measuring Forgetting of Memorized Training Examples M Jagielski, O Thakkar, F Tramèr, D Ippolito, K Lee, N Carlini, E Wallace, ... arXiv preprint arXiv:2207.00099, 2022 | 66 | 2022 |
The privacy onion effect: Memorization is relative N Carlini, M Jagielski, C Zhang, N Papernot, A Terzis, F Tramer Advances in Neural Information Processing Systems 35, 13263-13276, 2022 | 61 | 2022 |
Threat Detection for Collaborative Adaptive Cruise Control in Connected Cars M Jagielski, N Jones, CW Lin, C Nita-Rotaru, S Shiraishi Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and …, 2018 | 51 | 2018 |