受强制性开放获取政策约束的文章 - Shiping Wang了解详情
无法在其他位置公开访问的文章:54 篇
Graph neural networks in node classification: survey and evaluation
S Xiao, S Wang, Y Dai, W Guo
Machine Vision and Applications 33 (1), 4, 2022
强制性开放获取政策: 国家自然科学基金委员会
Learning deep sparse regularizers with applications to multi-view clustering and semi-supervised classification
S Wang, Z Chen, S Du, Z Lin
IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (9), 5042-5055, 2021
强制性开放获取政策: US National Science Foundation, 国家自然科学基金委员会
Sparse graph embedding unsupervised feature selection
S Wang, W Zhu
IEEE Transactions on Systems, Man, and Cybernetics: Systems 48 (3), 329-341, 2016
强制性开放获取政策: 国家自然科学基金委员会
Unsupervised feature selection via maximum projection and minimum redundancy
S Wang, W Pedrycz, Q Zhu, W Zhu
Knowledge-Based Systems 75, 19-29, 2015
强制性开放获取政策: 国家自然科学基金委员会
Sparse multigraph embedding for multimodal feature representation
S Wang, W Guo
IEEE Transactions on Multimedia 19 (7), 1454-1466, 2017
强制性开放获取政策: 国家自然科学基金委员会
Unsupervised feature selection via low-rank approximation and structure learning
S Wang, H Wang
Knowledge-Based Systems 124, 70-79, 2017
强制性开放获取政策: 国家自然科学基金委员会
Robust co-clustering via dual local learning and high-order matrix factorization
S Wang, W Guo
Knowledge-Based Systems 138, 176-187, 2017
强制性开放获取政策: 国家自然科学基金委员会
DA-Net: Dual-attention network for multivariate time series classification
R Chen, X Yan, S Wang, G Xiao
Information Sciences 610, 472-487, 2022
强制性开放获取政策: 国家自然科学基金委员会
Generative adversarial networks based on Wasserstein distance for knowledge graph embeddings
Y Dai, S Wang, X Chen, C Xu, W Guo
Knowledge-Based Systems 190, 105165, 2020
强制性开放获取政策: 国家自然科学基金委员会
Unsupervised feature selection via transformed auto-encoder
Y Zhang, Z Lu, S Wang
Knowledge-Based Systems 215, 106748, 2021
强制性开放获取政策: 国家自然科学基金委员会
Unsupervised embedded feature learning for deep clustering with stacked sparse auto-encoder
J Cai, S Wang, W Guo
Expert Systems with Applications 186, 115729, 2021
强制性开放获取政策: 国家自然科学基金委员会
An overview of correlation-filter-based object tracking
S Du, S Wang
IEEE Transactions on Computational Social Systems 9 (1), 18-31, 2021
强制性开放获取政策: 国家自然科学基金委员会
Sparse neighbor constrained co-clustering via category consistency learning
Z Lu, G Liu, S Wang
Knowledge-Based Systems 201, 105987, 2020
强制性开放获取政策: 国家自然科学基金委员会
Multi-view fuzzy clustering of deep random walk and sparse low-rank embedding
S Wang, S Xiao, W Zhu, Y Guo
Information Sciences 586, 224-238, 2022
强制性开放获取政策: 国家自然科学基金委员会
Deep clustering by maximizing mutual information in variational auto-encoder
C Xu, Y Dai, R Lin, S Wang
Knowledge-Based Systems 205, 106260, 2020
强制性开放获取政策: 国家自然科学基金委员会
Dual fusion-propagation graph neural network for multi-view clustering
S Xiao, S Du, Z Chen, Y Zhang, S Wang
IEEE Transactions on Multimedia 25, 9203-9215, 2023
强制性开放获取政策: 国家自然科学基金委员会
Structured learning for unsupervised feature selection with high-order matrix factorization
S Wang, J Chen, W Guo, G Liu
Expert Systems with Applications 140, 112878, 2020
强制性开放获取政策: 国家自然科学基金委员会
Seeded random walk for multi-view semi-supervised classification
S Wang, Z Wang, KL Lim, G Xiao, W Guo
Knowledge-Based Systems 222, 107016, 2021
强制性开放获取政策: 国家自然科学基金委员会
An adaptive kernelized rank-order distance for clustering non-spherical data with high noise
T Huang, S Wang, W Zhu
International Journal of Machine Learning and Cybernetics 11, 1735-1747, 2020
强制性开放获取政策: 国家自然科学基金委员会
An unsupervised embedding learning feature representation scheme for network big data analysis
W Guo, Y Shi, S Wang, NN Xiong
IEEE Transactions on Network Science and Engineering 7 (1), 115-126, 2019
强制性开放获取政策: 国家自然科学基金委员会
出版信息和资助信息由计算机程序自动确定