关注
Simon Oster
Simon Oster
PhD student, Bundesanstalt für Materialforschung und Prüfung
在 bam.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
Can potential defects in LPBF be healed from the laser exposure of subsequent layers? A quantitative study
A Ulbricht, G Mohr, SJ Altenburg, S Oster, C Maierhofer, G Bruno
Metals 11 (7), 1012, 2021
232021
A deep learning framework for defect prediction based on thermographic in-situ monitoring in laser powder bed fusion
S Oster, PP Breese, A Ulbricht, G Mohr, SJ Altenburg
Journal of Intelligent Manufacturing 35 (4), 1687-1706, 2024
122024
On the registration of thermographic in situ monitoring data and computed tomography reference data in the scope of defect prediction in laser powder bed fusion
S Oster, T Fritsch, A Ulbricht, G Mohr, G Bruno, C Maierhofer, ...
Metals 12 (6), 947, 2022
112022
Investigation of the thermal history of L-PBF metal parts by feature extraction from in-situ SWIR thermography
S Oster, C Maierhofer, G Mohr, K Hilgenberg, A Ulbricht, SJ Altenburg
Thermosense: Thermal Infrared Applications XLIII 11743, 84-94, 2021
42021
Potentials and challenges of deep-learningassisted porosity prediction based on thermographic in situ monitoring in laser powder bed fusion: Potentiale und Herausforderungen in …
S Oster, N Scheuschner, K Chand, SJ Altenburg, G Gerlach
tm-Technisches Messen 90 (s1), 85-96, 2023
12023
Aktive Laserthermografie im L-PBF-Prozess zur in-situ Detektion von Defekten
PP Breese, T Becker, S Oster, SJ Altenburg, C Metz, C Maierhofer
DGZfP-Berichtsband 177, 1-9, 2022
12022
Erratum to: Potentials and challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring in laser powder bed fusion
S Oster, N Scheuschner, K Chand, SJ Altenburg, G Gerlach
tm-Technisches Messen 91 (2), 139-141, 2024
2024
Potentials and challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring in laser powder bed fusion (vol 90, pg 85, 2023)
S Oster, N Scheuschner, K Chand, SJ Altenburg, G Gerlach
TM-TECHNISCHES MESSEN, 2024
2024
C5. 4-From Thermographic In-situ Monitoring to Porosity Detection-A Deep Learning Framework for Quality Control in Laser Powder Bed Fusion
S Oster, N Scheuschner, K Chand, P Breese, T Becker, S Altenburg, ...
Lectures, 179-180, 2023
2023
In-situ defect detection for laser powder bed fusion with active laser thermography
PP Breese
2023
Potentials and challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring in PBF-LB/M
S Oster
2023
In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection
N Scheuschner, F Heinrichsdorff, S Oster, E Uhlmann, J Polte, A Gordei, ...
Lasers in Manufacturing Conference 2023, 1-10, 2023
2023
In-situ defect detection via active laser thermographic testing for PBF-LB/M
PP Breese, T Becker, S Oster, C Metz, S Altenburg
LiM 2023 Proceedings, 1-10, 2023
2023
In-situ Prüfung additiv gefertigter L-PBF-Bauteile mit aktiver Laserthermografie
PP Breese, T BECKER, S OSTER, C METZ, SJ ALTENBURG
2022
Machine Learning based defect detection in Laser Powder Bed Fusion utilizing thermographic feature data
S Oster
2022
Defect prediction on the Base of Thermographic features in Laser Powder Bed Fusion Utilizing Machine Learning Algorithms
S Oster
2022
Porosity prediction in metal based additive manufacturing utilizing in situ thermography
S Oster
2022
Defect prediction in laser powder bed fusion based on thermographic features utilizing convolutional neural networks
S Oster
2022
Multispectral in-situ monitoring of a L-PBF manufacturing process using three thermographic camera systems
S Oster
2021
Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study. Metals 2021, 11, 1012
A Ulbricht, G Mohr, SJ Altenburg, S Oster, C Maierhofer, G Bruno
s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–20