关注
S. R. Nandakumar
S. R. Nandakumar
其他姓名Nandakumar Sasidharan Rajalekshmi
IBM Research Zurich
在 zurich.ibm.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Neuromorphic computing with multi-memristive synapses
I Boybat, ML Gallo, SR Nandakumar, T Moraitis, T Parnell, T Tuma, ...
Nature communications, 2018
7282018
Accurate deep neural network inference using computational phase-change memory
V Joshi, M Le Gallo, S Haefeli, I Boybat, SR Nandakumar, C Piveteau, ...
Nature communications 11 (1), 2473, 2020
3972020
A phase-change memory model for neuromorphic computing
SR Nandakumar, M Le Gallo, I Boybat, B Rajendran, A Sebastian, ...
Journal of Applied Physics 124 (15), 2018
1302018
A 250 mV Cu/SiO2/W Memristor with Half-Integer Quantum Conductance States
SR Nandakumar, M Minvielle, S Nagar, C Dubourdieu, B Rajendran
Nano letters 16 (3), 1602-1608, 2016
1102016
HERMES Core–A 14nm CMOS and PCM-based In-Memory Compute Core using an array of 300ps/LSB Linearized CCO-based ADCs and local digital processing
R Khaddam-Aljameh, M Stanisavljevic, JF Mas, G Karunaratne, ...
2021 Symposium on VLSI Circuits, 1-2, 2021
1032021
Mixed-Precision Deep Learning Based on Computational Memory
SR Nandakumar, M Le Gallo, C Piveteau, V Joshi, G Mariani, I Boybat, ...
Frontiers in Neuroscience 14, 2020
972020
Mixed-precision architecture based on computational memory for training deep neural networks
SR Nandakumar, M Le Gallo, I Boybat, B Rajendran, A Sebastian, ...
2018 IEEE International Symposium on Circuits and Systems (ISCAS), 1-5, 2018
742018
HERMES-Core—A 1.59-TOPS/mm2 PCM on 14-nm CMOS In-Memory Compute Core Using 300-ps/LSB Linearized CCO-Based ADCs
R Khaddam-Aljameh, M Stanisavljevic, JF Mas, G Karunaratne, M Brändli, ...
IEEE Journal of Solid-State Circuits 57 (4), 1027-1038, 2022
732022
Experimental demonstration of supervised learning in spiking neural networks with phase-change memory synapses
SR Nandakumar, I Boybat, M Le Gallo, E Eleftheriou, A Sebastian, ...
Scientific reports 10 (1), 1-11, 2020
722020
Computational memory-based inference and training of deep neural networks
A Sebastian, I Boybat, M Dazzi, I Giannopoulos, V Jonnalagadda, V Joshi, ...
2019 Symposium on VLSI Technology, T168-T169, 2019
472019
Building brain-inspired computing systems: Examining the role of nanoscale devices
SR Nandakumar, SR Kulkarni, AV Babu, B Rajendran
IEEE Nanotechnology Magazine 12 (3), 19-35, 2018
442018
Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators
MJ Rasch, C Mackin, M Le Gallo, A Chen, A Fasoli, F Odermatt, N Li, ...
Nature communications 14 (1), 5282, 2023
392023
Optimised weight programming for analogue memory-based deep neural networks
C Mackin, MJ Rasch, A Chen, J Timcheck, RL Bruce, N Li, P Narayanan, ...
Nature communications 13 (1), 3765, 2022
322022
Deep learning acceleration based on in-memory computing
E Eleftheriou, M Le Gallo, SR Nandakumar, C Piveteau, I Boybat, V Joshi, ...
IBM Journal of Research and Development 63 (6), 7: 1-7: 16, 2019
312019
Supervised learning in spiking neural networks with MLC PCM synapses
SR Nandakumar, I Boybat, M Le Gallo, A Sebastian, B Rajendran, ...
2017 75th Annual Device Research Conference (DRC), 1-2, 2017
292017
Precision of bit slicing with in-memory computing based on analog phase-change memory crossbars
M Le Gallo, SR Nandakumar, L Ciric, I Boybat, R Khaddam-Aljameh, ...
Neuromorphic Computing and Engineering 2 (1), 014009, 2022
272022
Mixed-precision training of deep neural networks using computational memory
SR Nandakumar, M Le Gallo, I Boybat, B Rajendran, A Sebastian, ...
arXiv preprint arXiv:1712.01192, 2017
252017
Phase-change memory models for deep learning training and inference
SR Nandakumar, I Boybat, V Joshi, C Piveteau, M Le Gallo, B Rajendran, ...
2019 26th IEEE International Conference on Electronics, Circuits and Systems …, 2019
242019
Precision of synaptic weights programmed in phase-change memory devices for deep learning inference
SR Nandakumar, I Boybat, JP Han, S Ambrogio, P Adusumilli, RL Bruce, ...
2020 IEEE International Electron Devices Meeting (IEDM), 29.4. 1-29.4. 4, 2020
212020
AnalogNets: ML-HW co-design of noise-robust TinyML models and always-on analog compute-in-memory accelerator
C Zhou, FG Redondo, J Büchel, I Boybat, XT Comas, SR Nandakumar, ...
arXiv preprint arXiv:2111.06503, 2021
182021
系统目前无法执行此操作,请稍后再试。
文章 1–20