Relating graph neural networks to structural causal models M Zečević, DS Dhami, P Veličković, K Kersting arXiv preprint arXiv:2109.04173, 2021 | 51 | 2021 |
Causal parrots: Large language models may talk causality but are not causal M Zečević, M Willig, DS Dhami, K Kersting arXiv preprint arXiv:2308.13067, 2023 | 47 | 2023 |
Dp-ctgan: Differentially private medical data generation using ctgans ML Fang, DS Dhami, K Kersting International Conference on Artificial Intelligence in Medicine, 178-188, 2022 | 41 | 2022 |
Interventional sum-product networks: Causal inference with tractable probabilistic models M Zečević, D Dhami, A Karanam, S Natarajan, K Kersting Advances in neural information processing systems 34, 15019-15031, 2021 | 33 | 2021 |
Drug‐drug interaction discovery: kernel learning from heterogeneous similarities DS Dhami, G Kunapuli, M Das, D Page, S Natarajan Smart Health 9, 88-100, 2018 | 30 | 2018 |
Can foundation models talk causality? M Willig, M Zečević, DS Dhami, K Kersting arXiv preprint arXiv:2206.10591, 2022 | 20 | 2022 |
Neuro-symbolic forward reasoning H Shindo, DS Dhami, K Kersting arXiv preprint arXiv:2110.09383, 2021 | 20 | 2021 |
Neural-probabilistic answer set programming A Skryagin, W Stammer, D Ochs, DS Dhami, K Kersting Proceedings of the International Conference on Principles of Knowledge …, 2022 | 19 | 2022 |
Fast relational probabilistic inference and learning: Approximate counting via hypergraphs M Das, DS Dhami, G Kunapuli, K Kersting, S Natarajan Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 7816-7824, 2019 | 19 | 2019 |
Identifying Parkinson's Patients by a Functional Gradient Boosting Approach S Sharma, M Gupta, K Goyal, M Goyal, P Sharma Intelligent Technologies and Parkinson’s Disease: Prediction and Diagnosis …, 2024 | 16 | 2024 |
Interpretable and explainable logical policies via neurally guided symbolic abstraction Q Delfosse, H Shindo, D Dhami, K Kersting Advances in Neural Information Processing Systems 36, 2024 | 14 | 2024 |
Machine learning applications to resting-state functional MR imaging analysis JM Billings, M Eder, WC Flood, DS Dhami, S Natarajan, CT Whitlow Neuroimaging Clinics 27 (4), 609-620, 2017 | 11 | 2017 |
ILP: thinking visual scenes as differentiable logic programs H Shindo, V Pfanschilling, DS Dhami, K Kersting Machine Learning 112 (5), 1465-1497, 2023 | 10 | 2023 |
Causal parrots: Large language models may talk causality but are not causal M Willig, M Zecevic, DS Dhami, K Kersting preprint 8, 2023 | 9 | 2023 |
Hanf: Hyperparameter and neural architecture search in federated learning J Seng, P Prasad, DS Dhami, K Kersting arXiv preprint arXiv:2206.12342 2, 2022 | 9 | 2022 |
Vision relation transformer for unbiased scene graph generation G Sudhakaran, DS Dhami, K Kersting, S Roth Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023 | 8 | 2023 |
Beyond Textual Data: Predicting Drug-Drug Interactions from Molecular Structure Images using Siamese Neural Networks DS Dhami, S Yan, G Kunapuli, D Page, S Natarajan arXiv preprint arXiv:1911.06356, 2019 | 7* | 2019 |
Probing for correlations of causal facts: Large language models and causality M Willig, M Zečević, DS Dhami, K Kersting | 6 | 2023 |
SLASH: Embracing probabilistic circuits into neural answer set programming A Skryagin, W Stammer, D Ochs, DS Dhami, K Kersting arXiv preprint arXiv:2110.03395, 2021 | 6 | 2021 |
Tearing Apart NOTEARS: Controlling the Graph Prediction via Variance Manipulation J Seng, M Zečević, DS Dhami, K Kersting arXiv preprint arXiv:2206.07195, 2022 | 5 | 2022 |