Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing P Liu, W Yuan, J Fu, Z Jiang, H Hayashi, G Neubig ACM Computing Surveys 55 (9), 1-35, 2023 | 3580 | 2023 |
How can we know what language models know? Z Jiang, FF Xu, J Araki, G Neubig Transactions of the Association for Computational Linguistics 8, 423-438, 2020 | 1173 | 2020 |
Gptscore: Evaluate as you desire J Fu, SK Ng, Z Jiang, P Liu arXiv preprint arXiv:2302.04166, 2023 | 264 | 2023 |
How Can We Know When Language Models Know? On the Calibration of Language Models for Question Answering Z Jiang, J Araki, H Ding, G Neubig Transactions of the Association for Computational Linguistics 9, 962-977, 2021 | 261 | 2021 |
GSum: A general framework for guided neural abstractive summarization ZY Dou, P Liu, H Hayashi, Z Jiang, G Neubig arXiv preprint arXiv:2010.08014, 2020 | 232 | 2020 |
Active retrieval augmented generation Z Jiang, FF Xu, L Gao, Z Sun, Q Liu, J Dwivedi-Yu, Y Yang, J Callan, ... arXiv preprint arXiv:2305.06983, 2023 | 170 | 2023 |
X-FACTR: Multilingual factual knowledge retrieval from pretrained language models Z Jiang, A Anastasopoulos, J Araki, H Ding, G Neubig Proceedings of the 2020 Conference on Empirical Methods in Natural Language …, 2020 | 115 | 2020 |
Graph-revised convolutional network D Yu, R Zhang, Z Jiang, Y Wu, Y Yang Machine Learning and Knowledge Discovery in Databases: European Conference …, 2021 | 100 | 2021 |
Peer: A collaborative language model T Schick, J Dwivedi-Yu, Z Jiang, F Petroni, P Lewis, G Izacard, Q You, ... arXiv preprint arXiv:2208.11663, 2022 | 89 | 2022 |
Incorporating external knowledge through pre-training for natural language to code generation FF Xu, Z Jiang, P Yin, B Vasilescu, G Neubig arXiv preprint arXiv:2004.09015, 2020 | 86 | 2020 |
Docprompting: Generating code by retrieving the docs S Zhou, U Alon, FF Xu, Z Wang, Z Jiang, G Neubig arXiv preprint arXiv:2207.05987, 2022 | 80* | 2022 |
Personalizing search results using hierarchical RNN with query-aware attention S Ge, Z Dou, Z Jiang, JY Nie, JR Wen Proceedings of the 27th ACM international conference on information and …, 2018 | 64 | 2018 |
Generalizing natural language analysis through span-relation representations Z Jiang, W Xu, J Araki, G Neubig arXiv preprint arXiv:1911.03822, 2019 | 57 | 2019 |
Learning to diversify search results via subtopic attention Z Jiang, JR Wen, Z Dou, WX Zhao, JY Nie, M Yue Proceedings of the 40th international ACM SIGIR Conference on Research and …, 2017 | 50 | 2017 |
Automatically mining facets for queries from their search results Z Dou, Z Jiang, S Hu, JR Wen, R Song IEEE Transactions on knowledge and data engineering 28 (2), 385-397, 2015 | 48 | 2015 |
OmniTab: Pretraining with natural and synthetic data for few-shot table-based question answering Z Jiang, Y Mao, P He, G Neubig, W Chen arXiv preprint arXiv:2207.03637, 2022 | 45 | 2022 |
Learning to filter context for retrieval-augmented generation Z Wang, J Araki, Z Jiang, MR Parvez, G Neubig arXiv preprint arXiv:2311.08377, 2023 | 30 | 2023 |
Retrieval as attention: End-to-end learning of retrieval and reading within a single transformer Z Jiang, L Gao, J Araki, H Ding, Z Wang, J Callan, G Neubig arXiv preprint arXiv:2212.02027, 2022 | 26 | 2022 |
Generating query facets using knowledge bases Z Jiang, Z Dou, JR Wen IEEE transactions on knowledge and data engineering 29 (2), 315-329, 2016 | 25 | 2016 |
Editeval: An instruction-based benchmark for text improvements J Dwivedi-Yu, T Schick, Z Jiang, M Lomeli, P Lewis, G Izacard, E Grave, ... arXiv preprint arXiv:2209.13331, 2022 | 17 | 2022 |