关注
Tailin Wu
Tailin Wu
Assistant professor at Westlake University; previously postdoc@Stanford CS, PhD at MIT
在 cs.stanford.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Graph Information Bottleneck
T Wu, H Ren, P Li, J Leskovec
Neural Information Processing Systems (NeurIPS 2020), https://arxiv.org/abs …, 2020
2202020
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
SM Udrescu, A Tan, J Feng, Orisvaldo Neto, T Wu, M Tegmark
Neural Information Processing Systems (NeurIPS 2020) Oral, arXiv preprint …, 2020
2022020
Learning with confident examples: Rank pruning for robust classification with noisy labels
CG Northcutt, T Wu, IL Chuang
Conference on Uncertainty in Artificial Intelligence (UAI 2017), 2017
1902017
Toward an artificial intelligence physicist for unsupervised learning
T Wu, M Tegmark
Physical Review E 100 (3), 033311, 2019
1312019
Toward an AI physicist for unsupervised learning
T Wu, M Tegmark
Physical Review E 100 (3), 033311, 2018
131*2018
Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems
X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y Xie, M Liu, Y Lin, Z Xu, K Yan, ...
https://arxiv.org/abs/2307.08423, 2023
732023
Pathway-Based Mean-Field Model for Escherichia coli Chemotaxis
G Si, T Wu, Q Ouyang, Y Tu
Physical review letters 109 (4), 048101, 2012
562012
Frequency-Dependent Escherichia coli Chemotaxis Behavior
X Zhu, G Si, N Deng, Q Ouyang, T Wu, Z He, L Jiang, C Luo, Y Tu
Physical review letters 108 (12), 128101, 2012
552012
Preventing and reversing vacuum-induced optical losses in high-finesse tantalum (V) oxide mirror coatings
D Gangloff, M Shi, T Wu, A Bylinskii, B Braverman, M Gutierrez, R Nichols, ...
Optics express 23 (14), 18014-18028, 2015
512015
Learnability for the Information Bottleneck
T Wu, I Fischer, I Chuang, M Tegmark
Conference on Uncertainty in Artificial Intelligence (UAI 2019), arXiv …, 2019
402019
Discovering Nonlinear Relations with Minimum Predictive Information Regularization
T Wu, T Breuel, M Skuhersky, J Kautz
ICML 2019 Time Series Workshop; arXiv preprint arXiv:2001.01885, 2020
292020
Learning to Accelerate Partial Differential Equations via Latent Global Evolution
T Wu, T Maruyama, J Leskovec
Neural Information Processing Systems (NeurIPS 2022), arXiv preprint arXiv …, 2022
272022
Phase transitions for the Information Bottleneck in representation learning
T Wu, I Fischer
International Conference on Learning Representations (ICLR 2020), arXiv:2001 …, 2020
272020
ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time
JL Tailin Wu, Megan Tjandrasuwita, Zhengxuan Wu, Xuelin Yang, Kevin Liu, Rok ...
Neural Information Processing Systems (NeurIPS 2022), arXiv preprint arXiv …, 2022
25*2022
Meta-learning autoencoders for few-shot prediction
T Wu, J Peurifoy, IL Chuang, M Tegmark
arXiv preprint arXiv:1807.09912, 2018
232018
Iterative precision measurement of branching ratios applied to 5P states in 88Sr+
H Zhang, M Gutierrez, GH Low, R Rines, J Stuart, T Wu, I Chuang
New Journal of Physics 18 (12), 123021, 2016
202016
Learning Large-scale Subsurface Simulations with a Hybrid Graph Network Simulator
T Wu, Q Wang, Y Zhang, R Ying, K Cao, R Sosič, R Jalali, H Hamam, ...
28th ACM SIGKDD Conference (KDD'22), 2022
192022
Pareto-optimal data compression for binary classification tasks
M Tegmark, T Wu
Entropy 2020 22 (1), 7, 2019
162019
Learning Controllable Adaptive Simulation for Multi-resolution Physics
T Wu, T Maruyama, Q Zhao, G Wetzstein, J Leskovec
International Conference on Learning Representations (ICLR 2023), spotlight …, 2023
142023
Advances in neural information processing systems
SM Udrescu, A Tan, J Feng, O Neto, T Wu, M Tegmark
Curran Associates, Inc., 2020
112020
系统目前无法执行此操作,请稍后再试。
文章 1–20