Zero-1-to-3: Zero-shot one image to 3d object R Liu, R Wu, B Van Hoorick, P Tokmakov, S Zakharov, C Vondrick Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023 | 429 | 2023 |
Learning video object segmentation with visual memory P Tokmakov, K Alahari, C Schmid Proceedings of the IEEE international conference on computer vision, 4481-4490, 2017 | 375 | 2017 |
Learning motion patterns in videos P Tokmakov, K Alahari, C Schmid Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 310 | 2017 |
Learning to track with object permanence P Tokmakov, J Li, W Burgard, A Gaidon Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 190 | 2021 |
Tao: A large-scale benchmark for tracking any object A Dave, T Khurana, P Tokmakov, C Schmid, D Ramanan Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 146 | 2020 |
Learning compositional representations for few-shot recognition P Tokmakov, YX Wang, M Hebert Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019 | 131 | 2019 |
A structured model for action detection Y Zhang, P Tokmakov, M Hebert, C Schmid Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019 | 108 | 2019 |
Learning to segment moving objects P Tokmakov, C Schmid, K Alahari International Journal of Computer Vision 127, 282-301, 2019 | 106 | 2019 |
Towards segmenting anything that moves A Dave, P Tokmakov, D Ramanan Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019 | 90* | 2019 |
Weakly-supervised semantic segmentation using motion cues P Tokmakov, K Alahari, C Schmid Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016 | 81* | 2016 |
One click mining: Interactive local pattern discovery through implicit preference and performance learning M Boley, M Mampaey, B Kang, P Tokmakov, S Wrobel Proceedings of the ACM SIGKDD workshop on interactive data exploration and …, 2013 | 76 | 2013 |
Discovering objects that can move Z Bao, P Tokmakov, A Jabri, YX Wang, A Gaidon, M Hebert Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 42 | 2022 |
Heterogeneous-agent trajectory forecasting incorporating class uncertainty B Ivanovic, KH Lee, P Tokmakov, B Wulfe, R Mcllister, A Gaidon, ... 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2022 | 36 | 2022 |
Standing between past and future: Spatio-temporal modeling for multi-camera 3d multi-object tracking Z Pang, J Li, P Tokmakov, D Chen, S Zagoruyko, YX Wang Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2023 | 34 | 2023 |
Relational linear programming K Kersting, M Mladenov, P Tokmakov Artificial Intelligence 244, 188-216, 2017 | 29* | 2017 |
Unsupervised learning of video representations via dense trajectory clustering P Tokmakov, M Hebert, C Schmid Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020 …, 2020 | 24 | 2020 |
Breaking the" Object" in Video Object Segmentation P Tokmakov, J Li, A Gaidon Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 22 | 2023 |
A study on action detection in the wild Y Zhang, P Tokmakov, M Hebert, C Schmid arXiv preprint arXiv:1904.12993, 2019 | 15 | 2019 |
Object permanence emerges in a random walk along memory P Tokmakov, A Jabri, J Li, A Gaidon arXiv preprint arXiv:2204.01784, 2022 | 14 | 2022 |
Learning to track any object A Dave, P Tokmakov, C Schmid, D Ramanan arXiv preprint arXiv:1910.11844, 2019 | 13 | 2019 |