关注
Park Jinhyun
Park Jinhyun
在 skku.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions
N Munir, HJ Kim, J Park, SJ Song, SS Kang
Ultrasonics 94, 74-81, 2019
1612019
Performance enhancement of convolutional neural network for ultrasonic flaw classification by adopting autoencoder
N Munir, J Park, HJ Kim, SJ Song, SS Kang
Ndt & E International 111, 102218, 2020
1092020
MRPC eddy current flaw classification in tubes using deep neural networks
J Park, SJ Han, N Munir, YT Yeom, SJ Song, HJ Kim, SG Kwon
Nuclear Engineering and Technology 51 (7), 1784-1790, 2019
192019
Performance comparison of ultrasonic focusing techniques for phased array ultrasonic inspection of dissimilar metal welds
YI Hwang, J Park, HJ Kim, SJ Song, YS Cho, SS Kang
International Journal of Precision Engineering and Manufacturing 20, 525-534, 2019
192019
System invariant method for ultrasonic flaw classification in weldments using residual neural network
J Park, SE Lee, HJ Kim, SJ Song, SS Kang
Applied Sciences 12 (3), 1477, 2022
122022
Sizing-based flaw acceptability in weldments using phased array ultrasonic testing and neural networks
SE Lee, J Park, YT Yeom, HJ Kim, SJ Song
Applied Sciences 13 (5), 3204, 2023
72023
Discrimination of Poor Electrode Junctions within Lithium-Ion Batteries by Ultrasonic Measurement and Deep Learning
YI Hwang, J Park, N Munir, HJ Kim, SJ Song, KB Kim
Batteries 8 (3), 21, 2022
62022
Extraction of Flaw Signals from the Mixed 1-D Signals by Denoising Autoencoder
SE Lee, J Park, HJ Kim, SJ Song
Applied Sciences 13 (6), 3534, 2023
32023
Focusing performance of phased array ultrasonic focusing methods using FEM simulation
JH Park, YI Hwang, HJ Kim, SJ Song, YS Cho
Journal of the Korean Society for Nondestructive Testing 37 (4), 239-248, 2017
32017
Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave
MS Kim, YT Yeom, JH Park, SJ Song, HJ Kim, SD Kwon, HY Lee
Journal of the Korean Society for Nondestructive Testing 37 (1), 29-36, 2017
32017
Improved ultrasonic dead zone detectability of work rolls using a convolutional neural network
YT Yeom, HH Kim, J Park, HJ Kim, SJ Song
Applied Sciences 12 (10), 5009, 2022
22022
系统目前无法执行此操作,请稍后再试。
文章 1–11