关注
Fumio Hashimoto
Fumio Hashimoto
Central Research Laboratory, Hamamatsu Photonics K.K.
在 crl.hpk.co.jp 的电子邮件经过验证
标题
引用次数
引用次数
年份
Dynamic PET image denoising using deep convolutional neural networks without prior training datasets
F Hashimoto, H Ohba, K Ote, A Teramoto, H Tsukada
IEEE access 7, 96594-96603, 2019
1192019
Ultrafast timing enables reconstruction-free positron emission imaging
SI Kwon, R Ota, E Berg, F Hashimoto, K Nakajima, I Ogawa, Y Tamagawa, ...
Nature photonics 15 (12), 914-918, 2021
712021
4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network
F Hashimoto, H Ohba, K Ote, A Kakimoto, H Tsukada, Y Ouchi
Physics in Medicine & Biology 66 (1), 015006, 2021
582021
Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks
F Hashimoto, A Kakimoto, N Ota, S Ito, S Nishizawa
Radiological physics and technology 12, 210-215, 2019
412019
Anatomical-guided attention enhances unsupervised PET image denoising performance
Y Onishi, F Hashimoto, K Ote, H Ohba, R Ota, E Yoshikawa, Y Ouchi
Medical image analysis 74, 102226, 2021
322021
PET image reconstruction incorporating deep image prior and a forward projection model
F Hashimoto, K Ote, Y Onishi
IEEE Transactions on Radiation and Plasma Medical Sciences 6 (8), 841-846, 2022
302022
Denoising of dynamic sinogram by image guided filtering for positron emission tomography
F Hashimoto, H Ohba, K Ote, H Tsukada
IEEE Transactions on Radiation and Plasma Medical Sciences 2 (6), 541-548, 2018
292018
Deep learning-based attenuation correction for brain PET with various radiotracers
F Hashimoto, M Ito, K Ote, T Isobe, H Okada, Y Ouchi
Annals of Nuclear Medicine 35, 691-701, 2021
262021
List-mode PET image reconstruction using deep image prior
K Ote, F Hashimoto, Y Onishi, T Isobe, Y Ouchi
IEEE Transactions on Medical Imaging 42 (6), 1822-1834, 2023
222023
Kinetics-induced block matching and 5-D transform domain filtering for dynamic PET image denoising
K Ote, F Hashimoto, A Kakimoto, T Isobe, T Inubushi, R Ota, A Tokui, ...
IEEE Transactions on Radiation and Plasma Medical Sciences 4 (6), 720-728, 2020
212020
Deep-learning-based fast TOF-PET image reconstruction using direction information
K Ote, F Hashimoto
Radiological Physics and Technology 15 (1), 72-82, 2022
202022
Compressed-sensing magnetic resonance image reconstruction using an iterative convolutional neural network approach
F Hashimoto, K Ote, T Oida, A Teramoto, Y Ouchi
Applied Sciences 10 (6), 1902, 2020
192020
Performance evaluation of dedicated brain PET scanner with motion correction system
Y Onishi, T Isobe, M Ito, F Hashimoto, T Omura, E Yoshikawa
Annals of Nuclear Medicine 36 (8), 746-755, 2022
182022
Unbiased TOF estimation using leading-edge discriminator and convolutional neural network trained by single-source-position waveforms
Y Onishi, F Hashimoto, K Ote, R Ota
Physics in Medicine & Biology 67 (4), 04NT01, 2022
182022
A feasibility study on 3D interaction position estimation using deep neural network in Cherenkov-based detector: A Monte Carlo simulation study
F Hashimoto, K Ote, R Ota, T Hasegawa
Biomedical Physics & Engineering Express 5 (3), 035001, 2019
142019
Deep learning-based PET image denoising and reconstruction: a review
F Hashimoto, Y Onishi, K Ote, H Tashima, AJ Reader, T Yamaya
Radiological physics and technology 17 (1), 24-46, 2024
122024
Fully 3D implementation of the end-to-end deep image prior-based PET image reconstruction using block iterative algorithm
F Hashimoto, Y Onishi, K Ote, H Tashima, T Yamaya
Physics in Medicine & Biology 68 (15), 155009, 2023
122023
Self-supervised pre-training for deep image prior-based robust pet image denoising
Y Onishi, F Hashimoto, K Ote, K Matsubara, M Ibaraki
IEEE Transactions on Radiation and Plasma Medical Sciences 8 (4), 348-356, 2023
82023
Basic study on the near-infrared light computed tomography, Development of the experimental systems using a digital single-lens reflex camera
S Osawa, C Murata, F Hashimoto, A Teramoto, H Fujita
Med. Imag. Inform. Sci 32, 44-47, 2015
72015
Correction for the influence of cataract on macular pigment measurement by autofluorescence technique using deep learning
A Obana, K Ote, F Hashimoto, R Asaoka, Y Gohto, S Okazaki, H Yamada
Translational vision science & technology 10 (2), 18-18, 2021
62021
系统目前无法执行此操作,请稍后再试。
文章 1–20