受强制性开放获取政策约束的文章 - Xuefeng Jiang了解详情
可在其他位置公开访问的文章:9 篇
Towards Federated Learning against Noisy Labels via Local Self-Regularization
X Jiang, S Sun, Y Wang, M Liu
Proceedings of the 31st ACM International Conference on Information …, 2022
强制性开放获取政策: 国家自然科学基金委员会
FedICT: Federated Multi-task Distillation for Multi-access Edge Computing
Z Wu, S Sun, Y Wang, M Liu, X Jiang, B Gao
IEEE Transactions on Parallel and Distributed Systems, 2023
强制性开放获取政策: 国家自然科学基金委员会
Fedcache: A knowledge cache-driven federated learning architecture for personalized edge intelligence
Z Wu, S Sun, Y Wang, M Liu, K Xu, W Wang, X Jiang, B Gao, J Lu
IEEE Transactions on Mobile Computing, 2024
强制性开放获取政策: 国家自然科学基金委员会
Survey of knowledge distillation in federated edge learning
Z Wu, S Sun, Y Wang, M Liu, X Jiang, R Li
arXiv preprint arXiv:2301.05849, 2023
强制性开放获取政策: 国家自然科学基金委员会
FedBIAD: Communication-Efficient and Accuracy-Guaranteed Federated Learning with Bayesian Inference-Based Adaptive Dropout
J Xue, M Liu, S Sun, Y Wang, H Jiang, X Jiang
2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS …, 2023
强制性开放获取政策: 国家自然科学基金委员会
FedTrip: A Resource-Efficient Federated Learning Method with Triplet Regularization
X Li, M Liu, S Sun, Y Wang, H Jiang, X Jiang
2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2023
强制性开放获取政策: 国家自然科学基金委员会
Federated Classification Tasks in Long-tailed Data Environments via Classifier Representation Adjustment and Calibration
X Li, S Sun, M Liu, J Ren, X Jiang, T He
Authorea Preprints, 2023
强制性开放获取政策: 国家自然科学基金委员会
FNBench: Benchmarking Robust Federated Learning against Noisy Labels
X Jiang, J Li, N Wu, Z Wu, X Li, S Sun, G Xu, Y Wang, Q Li, M Liu
强制性开放获取政策: 国家自然科学基金委员会
Fedspl: Robust Federated Learning Against Noisy Labels Via Self-Paced Learning
Y Chen, Z Da, X Jiang, Y Zhang, N Xiong
Available at SSRN 4853275, 2024
强制性开放获取政策: 国家自然科学基金委员会
出版信息和资助信息由计算机程序自动确定