On the universality of invariant networks H Maron, E Fetaya, N Segol, Y Lipman International conference on machine learning, 4363-4371, 2019 | 258 | 2019 |
On universal equivariant set networks N Segol, Y Lipman arXiv preprint arXiv:1910.02421, 2019 | 71 | 2019 |
Surface networks via general covers N Haim, N Segol, H Ben-Hamu, H Maron, Y Lipman Proceedings of the IEEE/CVF international conference on computer vision, 632-641, 2019 | 57 | 2019 |
Set2graph: Learning graphs from sets H Serviansky, N Segol, J Shlomi, K Cranmer, E Gross, H Maron, Y Lipman Advances in Neural Information Processing Systems 33, 22080-22091, 2020 | 40 | 2020 |
Secondary vertex finding in jets with neural networks J Shlomi, S Ganguly, E Gross, K Cranmer, Y Lipman, H Serviansky, ... The European Physical Journal C 81 (6), 1-12, 2021 | 37 | 2021 |
Improved convergence guarantees for learning Gaussian mixture models by EM and gradient EM N Segol, B Nadler Electronic journal of statistics 15 (2), 4510-4544, 2021 | 15 | 2021 |
Deep Learning for Inertial Sensor Alignment M Freydin, N Segol, N Sfaradi, A Eweida, B Or IEEE Sensors Journal, 2024 | 4 | 2024 |
Secondary Vertex Finding in Jets with Neural Networks (2020) J Shlomi, S Ganguly, E Gross, K Cranmer, Y Lipman, H Serviansky, ... arXiv preprint arXiv:2008.02831, 0 | 4 | |
Learning position from vehicle vibration using an inertial measurement unit B Or, N Segol, A Eweida, M Freydin IEEE Transactions on Intelligent Transportation Systems, 2024 | 2 | 2024 |
Mountnet: Learning an inertial sensor mounting angle with deep neural networks M Freydin, N Sfaradi, N Segol, A Eweida, B Or arXiv preprint arXiv:2212.11120, 2022 | 2 | 2022 |
Proceedings of the IEEE/CVF International Conference on Computer Vision N Haim, N Segol, H Ben-Hamu, H Maron, Y Lipman | 2 | 2019 |
Set2Graph: Learning Graphs From Sets: Supplementary Material H Serviansky, N Segol, J Shlomi, K Cranmer, E Gross, H Maron, Y Lipman | | |