A 2Cat-inspired model structure for double categories L Moser, M Sarazola, P Verdugo Cahiers de Topologie et de Géométrie Différentielle Catégoriques 63 (2), 184-236, 2022 | 14 | 2022 |
Stable homotopy hypothesis in the Tamsamani model L Moser, V Ozornova, S Paoli, M Sarazola, P Verdugo Topology and its Applications 316, 108106, 2022 | 8 | 2022 |
Cotorsion pairs and a K-theory localization theorem M Sarazola Journal of Pure and Applied Algebra, 106399, 2020 | 7 | 2020 |
A model structure for weakly horizontally invariant double categories L Moser, M Sarazola, P Verdugo Algebraic & Geometric Topology 23 (4), 1725-1786, 2023 | 6 | 2023 |
Cofibration category of digraphs for path homology D Carranza, B Doherty, K Kapulkin, M Opie, M Sarazola, LZ Wong Algebraic Combinatorics 7 (2), 475-514, 2024 | 4 | 2024 |
Fibrantly-induced model structures L Guetta, L Moser, M Sarazola, P Verdugo arXiv preprint arXiv:2301.07801, 2023 | 4 | 2023 |
A recipe for black box functors B Fong, M Sarazola Theory and Applications of Categories 35, 979-1011, 2020 | 4 | 2020 |
Biochemical Coupling Through Emergent Conservation Laws JC Baez, BS Pollard, J Lorand, M Sarazola arXiv preprint arXiv:1806.10764, 2018 | 3 | 2018 |
Loop spaces and operads M Sarazola Notes available at https://drive. google. com/file/d/1_ UWR66MmQWnxbYeZWB …, 0 | 2 | |
Internal Grothendieck construction for enriched categories L Moser, M Sarazola, P Verdugo arXiv preprint arXiv:2308.14455, 2023 | 1 | 2023 |
A Gillet-Waldhausen Theorem for chain complexes of sets M Sarazola, B Shapiro arXiv preprint arXiv:2107.07701, 2021 | 1 | 2021 |
A model structure for Grothendieck fibrations L Moser, M Sarazola Journal of Pure and Applied Algebra, 107692, 2024 | | 2024 |
A concise proof of the stable model structure on symmetric spectra C Malkiewich, M Sarazola arXiv preprint arXiv:2402.04220, 2024 | | 2024 |
Equivariant Trees and Partition Complexes JE Bergner, P Bonventre, ME Calle, D Chan, M Sarazola arXiv preprint arXiv:2302.08949, 2023 | | 2023 |
Constructing K-Theory Spectra from Algebraic Structures with a Class of Acyclic Objects MES Duarte Cornell University, 2021 | | 2021 |
An introduction to locally finitely presentable categories M SARAZOLA | | 2017 |