A robust inverse scattering transform for the focusing nonlinear Schrödinger equation D Bilman, PD Miller Communications on Pure and Applied Mathematics 72 (8), 1722-1805, 2019 | 136 | 2019 |
Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy D Bilman, L Ling, PD Miller Duke Mathematical Journal 169 (4), 671-760, 2020 | 95 | 2020 |
Far-field asymptotics for multiple-pole solitons in the large-order limit D Bilman, R Buckingham, DS Wang Journal of Differential Equations 297, 320-369, 2021 | 72 | 2021 |
Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation D Bilman, R Buckingham Journal of Nonlinear Science 29, 2185-2229, 2019 | 66 | 2019 |
Extreme Superposition: High-Order Fundamental Rogue Waves in the Far-Field Regime D Bilman, PD Miller arXiv preprint arXiv:2103.00337, 2021 | 12 | 2021 |
Numerical inverse scattering for the Toda lattice D Bilman, T Trogdon Communications in Mathematical Physics 352, 805-879, 2017 | 12 | 2017 |
Broader universality of rogue waves of infinite order D Bilman, PD Miller Physica D: Nonlinear Phenomena 435, 133289, 2022 | 9 | 2022 |
On numerical inverse scattering for the Korteweg–de Vries equation with discontinuous step-like data D Bilman, T Trogdon Nonlinearity 33 (5), 2211, 2020 | 9 | 2020 |
Computation of large-genus solutions of the Korteweg–de Vries equation D Bilman, P Nabelek, T Trogdon Physica D: Nonlinear Phenomena 449, 133715, 2023 | 8 | 2023 |
On the evolution of scattering data under perturbations of the Toda lattice D Bilman, I Nenciu Physica D: Nonlinear Phenomena 330, 1-16, 2016 | 8 | 2016 |
ISTPackage T Trogdon, D Bilman | 8 | 2013 |
Benchmarking numerical methods for lattice equations with the Toda lattice D Bilman, T Trogdon Applied Numerical Mathematics 141, 19-35, 2019 | 5 | 2019 |
Discrete Integrable Systems, Darboux Transformations, and Yang–Baxter Maps D Bilman, S Konstantinou-Rizos Symmetries and Integrability of Difference Equations, 195-260, 2017 | 2 | 2017 |
On long-time asymptotics for the Toda lattice and its Hamiltonian perturbations D Bilman University of Illinois at Chicago, 2015 | 1 | 2015 |
On special solutions of Zakharov-Schulman equations D Bilman Thesis (MS)-Bogazici University. Institute for Graduate Studies in Science …, 2009 | | 2009 |
Integrating Ordinary Differential Equations Using Lie Symmetries D Bilman | | 2006 |