TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines D Ershov, MS Phan, JW Pylvänäinen, SU Rigaud, L Le Blanc, ... Nature methods 19 (7), 829-832, 2022 | 395 | 2022 |
Democratising deep learning for microscopy with ZeroCostDL4Mic L von Chamier, RF Laine, J Jukkala, C Spahn, D Krentzel, E Nehme, ... Nature communications 12 (1), 2276, 2021 | 393 | 2021 |
Whole-genome sequencing coupled to imputation discovers genetic signals for anthropometric traits I Tachmazidou, D Süveges, JL Min, GRS Ritchie, J Steinberg, K Walter, ... The American Journal of Human Genetics 100 (6), 865-884, 2017 | 328* | 2017 |
C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction J Lautenschläger, AD Stephens, G Fusco, F Ströhl, N Curry, ... Nature communications 9 (1), 712, 2018 | 292 | 2018 |
Structural analysis of herpes simplex virus by optical super-resolution imaging RF Laine, A Albecka, S Van De Linde, EJ Rees, CM Crump, CF Kaminski Nature communications 6 (1), 5980, 2015 | 163 | 2015 |
NanoJ: a high-performance open-source super-resolution microscopy toolbox RF Laine, KL Tosheva, N Gustafsson, RDM Gray, P Almada, D Albrecht, ... Journal of physics D: Applied physics 52 (16), 163001, 2019 | 145 | 2019 |
Artificial intelligence for microscopy: what you should know L von Chamier, RF Laine, R Henriques Biochemical Society Transactions 47 (4), 1029-1040, 2019 | 102 | 2019 |
FLIM FRET technology for drug discovery: Automated multiwell‐plate high‐content analysis, multiplexed readouts and application in situ S Kumar, D Alibhai, A Margineanu, R Laine, G Kennedy, J McGinty, ... ChemPhysChem 12 (3), 609-626, 2011 | 90 | 2011 |
Avoiding a replication crisis in deep-learning-based bioimage analysis RF Laine, I Arganda-Carreras, R Henriques, G Jacquemet Nature methods 18 (10), 1136-1144, 2021 | 87 | 2021 |
Automating multimodal microscopy with NanoJ-Fluidics P Almada, PM Pereira, S Culley, G Caillol, F Boroni-Rueda, CL Dix, ... Nature communications 10 (1), 1223, 2019 | 87 | 2019 |
Bringing TrackMate into the era of machine-learning and deep-learning D Ershov, MS Phan, JW Pylvänäinen, SU Rigaud, L Le Blanc, ... BioRxiv, 2021.09. 03.458852, 2021 | 83 | 2021 |
Nanoscopic insights into seeding mechanisms and toxicity of α-synuclein species in neurons D Pinotsi, CH Michel, AK Buell, RF Laine, P Mahou, CM Dobson, ... Proceedings of the National Academy of Sciences 113 (14), 3815-3819, 2016 | 80 | 2016 |
Probing the growth kinetics for the formation of uniform 1D block copolymer nanoparticles by living crystallization-driven self-assembly CE Boott, EM Leitao, DW Hayward, RF Laine, P Mahou, G Guerin, ... ACS nano 12 (9), 8920-8933, 2018 | 77 | 2018 |
De novo design of a biologically active amyloid R Gallardo, M Ramakers, F De Smet, F Claes, L Khodaparast, ... Science 354 (6313), aah4949, 2016 | 76 | 2016 |
Fluctuation-based super-resolution traction force microscopy A Stubb, RF Laine, M Miihkinen, H Hamidi, C Guzmán, R Henriques, ... Nano letters 20 (4), 2230-2245, 2020 | 68 | 2020 |
Automated cell tracking using StarDist and TrackMate E Fazeli, NH Roy, G Follain, RF Laine, L von Chamier, PE Hänninen, ... F1000Research 9, 2020 | 67 | 2020 |
HSV‐1 glycoproteins are delivered to virus assembly sites through dynamin‐dependent endocytosis A Albecka, RF Laine, AFJ Janssen, CF Kaminski, CM Crump Traffic 17 (1), 21-39, 2016 | 63 | 2016 |
Fluorescence lifetime optical projection tomography J McGinty, KB Tahir, R Laine, CB Talbot, C Dunsby, MAA Neil, L Quintana, ... Journal of biophotonics 1 (5), 390-394, 2008 | 60 | 2008 |
Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans C Huang, S Wagner-Valladolid, AD Stephens, R Jung, C Poudel, ... Elife 8, e43059, 2019 | 58 | 2019 |
In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse J McGinty, DW Stuckey, VY Soloviev, R Laine, M Wylezinska-Arridge, ... Biomedical optics express 2 (7), 1907-1917, 2011 | 58 | 2011 |