A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family JS Smith, CB Brachmann, I Celic, MA Kenna, S Muhammad, VJ Starai, ... Proceedings of the National Academy of Sciences 97 (12), 6658-6663, 2000 | 956 | 2000 |
Mechanism of sirtuin inhibition by nicotinamide: altering the NAD+ cosubstrate specificity of a Sir2 enzyme JL Avalos, KM Bever, C Wolberger Molecular cell 17 (6), 855-868, 2005 | 558 | 2005 |
Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols JL Avalos, GR Fink, G Stephanopoulos Nature biotechnology 31 (4), 335-341, 2013 | 554 | 2013 |
Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2. 2 at 3.1 Å resolution X Tao, JL Avalos, J Chen, R MacKinnon Science 326 (5960), 1668-1674, 2009 | 380 | 2009 |
Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions AA Sauve, I Celic, J Avalos, H Deng, JD Boeke, VL Schramm Biochemistry 40 (51), 15456-15463, 2001 | 375 | 2001 |
Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds D Bracha, MT Walls, MT Wei, L Zhu, M Kurian, JL Avalos, JE Toettcher, ... Cell 175 (6), 1467-1480. e13, 2018 | 349 | 2018 |
Optogenetic regulation of engineered cellular metabolism for microbial chemical production EM Zhao, Y Zhang, J Mehl, H Park, MA Lalwani, JE Toettcher, JL Avalos Nature 555 (7698), 683-687, 2018 | 348 | 2018 |
Structure of a Sir2 enzyme bound to an acetylated p53 peptide JL Avalos, I Celic, S Muhammad, MS Cosgrove, JD Boeke, C Wolberger Molecular cell 10 (3), 523-535, 2002 | 318 | 2002 |
Light-based control of metabolic flux through assembly of synthetic organelles EM Zhao, N Suek, MZ Wilson, E Dine, NL Pannucci, Z Gitai, JL Avalos, ... Nature chemical biology 15 (6), 589-597, 2019 | 216 | 2019 |
Harnessing yeast organelles for metabolic engineering SK Hammer, JL Avalos Nature chemical biology 13 (8), 823-832, 2017 | 200 | 2017 |
Structural basis for the mechanism and regulation of Sir2 enzymes JL Avalos, JD Boeke, C Wolberger Molecular cell 13 (5), 639-648, 2004 | 192 | 2004 |
Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide KG Hoff, JL Avalos, K Sens, C Wolberger Structure 14 (8), 1231-1240, 2006 | 171 | 2006 |
Optogenetic control of protein binding using light-switchable nanobodies AA Gil, C Carrasco-López, L Zhu, EM Zhao, PT Ravindran, MZ Wilson, ... Nature communications 11 (1), 4044, 2020 | 125 | 2020 |
The Structural Basis of Sirtuin Substrate Affinity, MS Cosgrove, K Bever, JL Avalos, S Muhammad, X Zhang, C Wolberger Biochemistry 45 (24), 7511-7521, 2006 | 120 | 2006 |
Current and future modalities of dynamic control in metabolic engineering MA Lalwani, EM Zhao, JL Avalos Current opinion in biotechnology 52, 56-65, 2018 | 109 | 2018 |
Optogenetic control of the lac operon for bacterial chemical and protein production MA Lalwani, SS Ip, C Carrasco-López, C Day, EM Zhao, H Kawabe, ... Nature chemical biology 17 (1), 71-79, 2021 | 100 | 2021 |
Physiological limitations and opportunities in microbial metabolic engineering J Montaño López, L Duran, JL Avalos Nature Reviews Microbiology 20 (1), 35-48, 2022 | 77 | 2022 |
SIR2 family of NAD+-dependent protein deacetylases JS Smith, J Avalos, I Celic, S Muhammad, C Wolberger, JD Boeke Methods in enzymology 353, 282-300, 2002 | 70 | 2002 |
Embracing biological solutions to the sustainable energy challenge O Adesina, IA Anzai, JL Avalos, B Barstow Chem 2 (1), 20-51, 2017 | 63 | 2017 |
Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis SK Hammer, JL Avalos Metabolic Engineering 44, 302-312, 2017 | 60 | 2017 |