Parallel performance of an IB-LBM suspension simulation framework L Mountrakis, E Lorenz, O Malaspinas, S Alowayyed, B Chopard, ... Journal of Computational Science 9, 45-50, 2015 | 69 | 2015 |
Where do the platelets go? A simulation study of fully resolved blood flow through aneurysmal vessels L Mountrakis, E Lorenz, AG Hoekstra Interface Focus 3 (2), 20120089, 2013 | 56 | 2013 |
Towards the virtual artery: a multiscale model for vascular physiology at the physics–chemistry–biology interface AG Hoekstra, S Alowayyed, E Lorenz, N Melnikova, L Mountrakis, ... Philosophical Transactions of the Royal Society A: Mathematical, Physical …, 2016 | 24 | 2016 |
A physical description of the adhesion and aggregation of platelets B Chopard, DR de Sousa, J Lätt, L Mountrakis, F Dubois, ... Royal Society open science 4 (4), 170219, 2017 | 22 | 2017 |
Scaling of shear-induced diffusion and clustering in a blood-like suspension L Mountrakis, E Lorenz, AG Hoekstra Europhysics Letters 114 (1), 14002, 2016 | 22 | 2016 |
Validation of an efficient two-dimensional model for dense suspensions of red blood cells L Mountrakis, E Lorenz, AG Hoekstra International Journal of Modern Physics C 25 (12), 1441005, 2014 | 22 | 2014 |
Revisiting the use of the immersed-boundary lattice-Boltzmann method for simulations of suspended particles L Mountrakis, E Lorenz, AG Hoekstra Physical Review E 96 (1), 013302, 2017 | 21 | 2017 |
Transport of blood cells studied with fully resolved models L Mountrakis Faculty of Science, University of Amsterdam, 2015 | 9 | 2015 |
Shear-induced transport of platelets in a red blood cell suspension Z Pleunis, E Lorenz, L Mountrakis, R Sprik, T van Leeuwen Bachelor Project 10001615, 2014 | 2 | 2014 |
Modeling the transport behavior of Platelets in intracranial aneurysms L Mountrakis, E Lorenz, AG Hoekstra University of Amsterdam, Netherlands.—2012, 2012 | 1 | 2012 |
Cluster size distribution and shear-induced diffusion in two-dimensional dense suspensions of deformable particles L Mountrakis, E Lorenz, AG Hoekstra | | |
Revisiting the use of the Immersed-boundary method for simulations of suspended particles L Mountrakis, E Lorenz, A Hoekstra | | |