Attentional feature fusion Y Dai, F Gieseke, S Oehmcke, Y Wu, K Barnard Proceedings of the IEEE/CVF winter conference on applications of computer …, 2021 | 756 | 2021 |
An unexpectedly large count of trees in the West African Sahara and Sahel M Brandt, CJ Tucker, A Kariryaa, K Rasmussen, C Abel, J Small, J Chave, ... Nature 587 (7832), 78-82, 2020 | 353 | 2020 |
Big universe, big data: machine learning and image analysis for astronomy J Kremer, K Stensbo-Smidt, F Gieseke, KS Pedersen, C Igel IEEE Intelligent Systems 32 (2), 16-22, 2017 | 132 | 2017 |
Buffer kd trees: processing massive nearest neighbor queries on GPUs F Gieseke, J Heinermann, C Oancea, C Igel International Conference on Machine Learning, 172-180, 2014 | 116 | 2014 |
Short-term wind energy forecasting using support vector regression O Kramer, F Gieseke Soft computing models in industrial and environmental applications, 6th …, 2011 | 82 | 2011 |
Spatial and temporal deep learning methods for deriving land-use following deforestation: A pan-tropical case study using Landsat time series RN Masolele, V De Sy, M Herold, D Marcos, J Verbesselt, F Gieseke, ... Remote Sensing of Environment 264, 112600, 2021 | 81 | 2021 |
On the realistic validation of photometric redshifts R Beck, CA Lin, EEO Ishida, F Gieseke, RS de Souza, MV Costa-Duarte, ... Monthly Notices of the Royal Astronomical Society 468 (4), 4323-4339, 2017 | 71 | 2017 |
Fast and simple gradient-based optimization for semi-supervised support vector machines F Gieseke, A Airola, T Pahikkala, O Kramer Neurocomputing 123, 23-32, 2014 | 71 | 2014 |
Nation-wide mapping of tree-level aboveground carbon stocks in Rwanda M Mugabowindekwe, M Brandt, J Chave, F Reiner, DL Skole, A Kariryaa, ... Nature Climate Change 13 (1), 91-97, 2023 | 65 | 2023 |
More than one quarter of Africa’s tree cover is found outside areas previously classified as forest F Reiner, M Brandt, X Tong, D Skole, A Kariryaa, P Ciais, A Davies, ... Nature Communications 14 (1), 2258, 2023 | 63 | 2023 |
Convolutional neural networks for transient candidate vetting in large-scale surveys F Gieseke, S Bloemen, C van den Bogaard, T Heskes, J Kindler, ... Monthly Notices of the Royal Astronomical Society 472 (3), 3101-3114, 2017 | 57 | 2017 |
Implementation of BFASTmonitor algorithm on google earth engine to support large-area and sub-annual change monitoring using earth observation data E Hamunyela, S Rosca, A Mirt, E Engle, M Herold, F Gieseke, ... Remote Sensing 12 (18), 2953, 2020 | 54 | 2020 |
Deep-learnt classification of light curves A Mahabal, K Sheth, F Gieseke, A Pai, SG Djorgovski, AJ Drake, ... 2017 IEEE symposium series on computational intelligence (SSCI), 1-8, 2017 | 51 | 2017 |
Wind energy prediction and monitoring with neural computation O Kramer, F Gieseke, B Satzger Neurocomputing 109, 84-93, 2013 | 49 | 2013 |
A probabilistic approach to emission-line galaxy classification RS De Souza, MLL Dantas, MV Costa-Duarte, ED Feigelson, M Killedar, ... Monthly Notices of the Royal Astronomical Society 472 (3), 2808-2822, 2017 | 46 | 2017 |
Sparse Quasi-Newton Optimization for Semi-supervised Support Vector Machines. F Gieseke, A Airola, T Pahikkala, O Kramer ICPRAM (1), 45-54, 2012 | 41 | 2012 |
Return of the features-Efficient feature selection and interpretation for photometric redshifts A D’Isanto, S Cavuoti, F Gieseke, KL Polsterer Astronomy & Astrophysics 616, A97, 2018 | 39 | 2018 |
Exploring the spectroscopic diversity of Type Ia supernovae with dracula: a machine learning approach M Sasdelli, EEO Ishida, R Vilalta, M Aguena, VC Busti, H Camacho, ... Monthly Notices of the Royal Astronomical Society 461 (2), 2044-2059, 2016 | 33 | 2016 |
Artistic movement recognition by boosted fusion of color structure and topographic description C Florea, C Toca, F Gieseke 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), 569-577, 2017 | 32 | 2017 |
Automatic galaxy classification via machine learning techniques KL Polsterer, F Gieseke, C Igel Astronomical Data Analysis Software and Systems, 2015 | 31* | 2015 |