Raft: Reward ranked finetuning for generative foundation model alignment H Dong, W Xiong, D Goyal, Y Zhang, W Chow, R Pan, S Diao, J Zhang, ... Transactions on Machine Learning Research (TMLR), 2023 | 177 | 2023 |
Local augmentation for graph neural networks S Liu, R Ying, H Dong, L Li, T Xu, Y Rong, P Zhao, J Huang, D Wu International conference on machine learning, 14054-14072, 2022 | 98 | 2022 |
Weakly supervised disentangled generative causal representation learning X Shen, F Liu, H Dong, Q Lian, Z Chen, T Zhang Journal of Machine Learning Research 23 (241), 1-55, 2022 | 98* | 2022 |
Bayesian invariant risk minimization Y Lin, H Dong, H Wang, T Zhang Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 57 | 2022 |
DetGPT: Detect What You Need via Reasoning R Pi, J Gao, S Diao, R Pan, H Dong, J Zhang, L Yao, J Han, H Xu, ... Proceedings of the 2023 Conference on Empirical Methods in Natural Language …, 2023 | 54* | 2023 |
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under kl-constraint W Xiong, H Dong, C Ye, Z Wang, H Zhong, H Ji, N Jiang, T Zhang Forty-first International Conference on Machine Learning, 2024 | 40* | 2024 |
Mitigating the alignment tax of RLHF Y Lin, H Lin, W Xiong, S Diao, J Liu, J Zhang, R Pan, H Wang, W Hu, ... arXiv preprint arXiv:2309.06256, 2023, 2023 | 39* | 2023 |
Lmflow: An extensible toolkit for finetuning and inference of large foundation models S Diao, R Pan, H Dong, KS Shum, J Zhang, W Xiong, T Zhang Annual Conference of the North American Chapter of the Association for …, 2024 | 35 | 2024 |
Mathematical models of overparameterized neural networks C Fang, H Dong, T Zhang Proceedings of the IEEE 109 (5), 683-703, 2021 | 30 | 2021 |
Higher-order weighted graph convolutional networks S Liu, L Chen, H Dong, Z Wang, D Wu, Z Huang arXiv preprint arXiv:1911.04129, 2019 | 26 | 2019 |
Vocabulary-informed Zero-shot and Open-set Learning Y Fu, X Wang, H Dong, YG Jiang, M Wang, X Xue, L Sigal IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019 | 23 | 2019 |
Over parameterized two-level neural networks can learn near optimal feature representations C Fang, H Dong, T Zhang arXiv preprint arXiv:1910.11508, 2019 | 16 | 2019 |
MLLM-Protector: Ensuring MLLM's Safety without Hurting Performance R Pi, T Han, Y Xie, R Pan, Q Lian, H Dong, J Zhang, T Zhang arXiv preprint arXiv:2401.02906, 2024 | 14 | 2024 |
Learning the Compositional Domains for Generalized Zero-shot Learning H Dong, Y Fu, SJ Hwang, L Sigal, X Xue Computer Vision and Image Understanding, 103454, 2022 | 13* | 2022 |
Reverse Diffusion Monte Carlo X Huang, H Dong, HAO Yifan, Y Ma, T Zhang The Twelfth International Conference on Learning Representations, 2024 | 12* | 2024 |
Particle-based variational inference with preconditioned functional gradient flow H Dong, X Wang, Y Lin, T Zhang The Eleventh International Conference on Learning Representations, 2023 | 12 | 2023 |
Rlhf workflow: From reward modeling to online rlhf H Dong, W Xiong, B Pang, H Wang, H Zhao, Y Zhou, N Jiang, D Sahoo, ... arXiv preprint arXiv:2405.07863, 2024 | 11 | 2024 |
Spurious feature diversification improves out-of-distribution generalization Y Lin, L Tan, Y Hao, H Wong, H Dong, W Zhang, Y Yang, T Zhang arXiv preprint arXiv:2309.17230, 2023 | 11 | 2023 |
Error Compensated Loopless SVRG for Distributed Optimization X Qian, H Dong, P Richtárik, T Zhang OPT2020: 12th Annual Workshop on Optimization for Machine Learning (NeurIPS …, 2020 | 8* | 2020 |
Extreme vocabulary learning H Dong, Z Sun, Y Fu, S Zhong, Z Zhang, YG Jiang Frontiers of Computer Science 14 (6), 1-12, 2019 | 5* | 2019 |