Fractons, dipole symmetries and curved spacetime L Bidussi, J Hartong, E Have, J Musaeus, S Prohazka SciPost Physics 12 (6), 205, 2022 | 85* | 2022 |
Non-boost invariant fluid dynamics J de Boer, J Hartong, E Have, N Obers, W Sybesma SciPost Physics 9 (2), 018, 2020 | 50 | 2020 |
Nonrelativistic expansion of closed bosonic strings J Hartong, E Have Physical Review Letters 128 (2), 021602, 2022 | 41 | 2022 |
Carrollian and celestial spaces at infinity J Figueroa-O’Farrill, E Have, S Prohazka, J Salzer Journal of High Energy Physics 2022 (9), 1-54, 2022 | 39 | 2022 |
The gauging procedure and carrollian gravity J Figueroa-O’Farrill, E Have, S Prohazka, J Salzer Journal of High Energy Physics 2022 (9), 1-47, 2022 | 28 | 2022 |
Newton-Cartan submanifolds and fluid membranes J Armas, J Hartong, E Have, BF Nielsen, NA Obers Physical Review E 101 (6), 062803, 2020 | 22 | 2020 |
Nonrelativistic approximations of closed bosonic string theory J Hartong, E Have Journal of High Energy Physics 2023 (2), 1-64, 2023 | 20 | 2023 |
Carrollian fluids and spontaneous breaking of boost symmetry J Armas, E Have Physical Review Letters 132 (16), 161606, 2024 | 13 | 2024 |
Ideal fracton superfluids J Armas, E Have SciPost Physics 16 (1), 039, 2024 | 10 | 2024 |
Massive carrollian fields at timelike infinity E Have, K Nguyen, S Prohazka, J Salzer arXiv preprint arXiv:2402.05190, 2024 | 4 | 2024 |
A coupling prescription for post-Newtonian corrections in quantum mechanics J Hartong, E Have, N Obers, I Pikovski SciPost Physics 16 (3), 088, 2024 | 3 | 2024 |
The double pendulum E Have, RO Nielsen, BT Nielsen The Niels Bohr Institute Publication, 4, 2013 | 3 | 2013 |
Strings near black holes are Carrollian A Bagchi, A Banerjee, J Hartong, E Have, KS Kolekar, M Mandlik arXiv preprint arXiv:2312.14240, 2023 | 2 | 2023 |
On Charged Lifshitz Holography E Have Niels Bohr Institute, Copenhagen University, 2017 | 1 | 2017 |
Non-Lorentzian geometry of fluids and strings E Have The University of Edinburgh, 2023 | | 2023 |