Optimal approximation of piecewise smooth functions using deep ReLU neural networks P Petersen, F Voigtlaender Neural Networks 108, 296-330, 2018 | 512 | 2018 |
Approximation spaces of deep neural networks R Gribonval, G Kutyniok, M Nielsen, F Voigtlaender Constructive Approximation 55 (1), 259-367, 2022 | 123 | 2022 |
Topological properties of the set of functions generated by neural networks of fixed size P Petersen, M Raslan, F Voigtlaender Foundations of Computational Mathematics 21, 375-444, 2021 | 105 | 2021 |
Equivalence of approximation by convolutional neural networks and fully-connected networks P Petersen, F Voigtlaender Proceedings of the American Mathematical Society 148 (4), 1567-1581, 2020 | 95 | 2020 |
Identifying the root causes of wait states in large-scale parallel applications D Böhme, M Geimer, L Arnold, F Voigtlaender, F Wolf ACM Transactions on Parallel Computing (TOPC) 3 (2), 1-24, 2016 | 94 | 2016 |
The universal approximation theorem for complex-valued neural networks F Voigtlaender Applied and Computational Harmonic Analysis 64, 33-61, 2023 | 53 | 2023 |
Embedding theorems for decomposition spaces with applications to wavelet coorbit spaces F Voigtlaender Dissertation, Aachen, Techn. Hochsch., 2015, 2016 | 49 | 2016 |
Wavelet coorbit spaces viewed as decomposition spaces H Führ, F Voigtlaender Journal of Functional Analysis 269 (1), 80-154, 2015 | 45 | 2015 |
Neural network approximation and estimation of classifiers with classification boundary in a Barron class A Caragea, P Petersen, F Voigtlaender The Annals of Applied Probability 33 (4), 3039-3079, 2023 | 39 | 2023 |
Proof of the theory-to-practice gap in deep learning via sampling complexity bounds for neural network approximation spaces P Grohs, F Voigtlaender Foundations of Computational Mathematics, 1-59, 2023 | 37 | 2023 |
Embeddings of decomposition spaces F Voigtlaender American Mathematical Society 287 (1426), 2023 | 33* | 2023 |
Resolution of the wavefront set using general continuous wavelet transforms J Fell, H Führ, F Voigtlaender Journal of Fourier Analysis and Applications 22 (5), 997-1058, 2016 | 23 | 2016 |
Sampling numbers of smoothness classes via ℓ1-minimization T Jahn, T Ullrich, F Voigtlaender Journal of Complexity 79, 101786, 2023 | 22 | 2023 |
Approximation in Lp(µ) with deep ReLU neural networks F Voigtlaender, P Petersen 2019 13th International conference on Sampling Theory and Applications …, 2019 | 17 | 2019 |
On dual molecules and convolution-dominated operators JL Romero, JT van Velthoven, F Voigtlaender Journal of Functional Analysis 280 (10), 108963, 2021 | 14 | 2021 |
Negative results for approximation using single layer and multilayer feedforward neural networks JM Almira, PE Lopez-de-Teruel, DJ Romero-López, F Voigtlaender Journal of mathematical analysis and applications 494 (1), 124584, 2021 | 13* | 2021 |
Optimal learning of high-dimensional classification problems using deep neural networks P Petersen, F Voigtlaender arXiv preprint arXiv:2112.12555, 2021 | 11 | 2021 |
Design and properties of wave packet smoothness spaces D Bytchenkoff, F Voigtlaender Journal de Mathématiques Pures et Appliquées 133, 185-262, 2020 | 11 | 2020 |
Phase transitions in rate distortion theory and deep learning P Grohs, A Klotz, F Voigtlaender Foundations of Computational Mathematics, 1-64, 2021 | 9 | 2021 |
Guided performance analysis combining profile and trace tools J Giménez, J Labarta, FX Pegenaute, HF Wen, D Klepacki, IH Chung, ... European Conference on Parallel Processing, 513-521, 2010 | 9 | 2010 |