关注
Fang Zhiwei
标题
引用次数
引用次数
年份
NVIDIA SimNet™: An AI-accelerated multi-physics simulation framework
O Hennigh, S Narasimhan, MA Nabian, A Subramaniam, K Tangsali, ...
International Conference on Computational Science, 447-461, 2021
255*2021
Deep physical informed neural networks for metamaterial design
Z Fang, J Zhan
Ieee Access 8, 24506-24513, 2019
1392019
A high-efficient hybrid physics-informed neural networks based on convolutional neural network
Z Fang
IEEE Transactions on Neural Networks and Learning Systems 33 (10), 5514-5526, 2021
1102021
A physics-informed neural network framework for PDEs on 3D surfaces: Time independent problems
Z Fang, J Zhan
IEEE Access 8, 26328-26335, 2019
592019
A superconvergent fitted finite volume method for B lack–S choles equations governing E uropean and A merican option valuation
S Wang, S Zhang, Z Fang
Numerical Methods for Partial Differential Equations 31 (4), 1190-1208, 2015
472015
A new FDTD scheme for Maxwell’s equations in Kerr-type nonlinear media
H Jia, J Li, Z Fang, M Li
Numerical Algorithms 82, 223-243, 2019
182019
Regularity analysis of metamaterial Maxwell’s equations with random coefficients and initial conditions
J Li, Z Fang, G Lin
Computer Methods in Applied Mechanics and Engineering 335, 24-51, 2018
162018
Efficient stochastic Galerkin methods for Maxwell’s equations with random inputs
Z Fang, J Li, T Tang, T Zhou
Journal of Scientific Computing 80, 248-267, 2019
142019
Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids
X Wang, J Li, Z Fang
Numerical Methods for Partial Differential Equations 34 (6), 2040-2059, 2018
122018
Mathematical analysis of Ziolkowski’s PML model with application for wave propagation in metamaterials
Y Huang, J Li, Z Fang
Journal of Computational and Applied Mathematics 366, 112434, 2020
102020
Optimal control for electromagnetic cloaking metamaterial parameters design
Z Fang, J Li, X Wang
Computers & Mathematics with Applications 79 (4), 1165-1176, 2020
92020
A physics-informed neural network framework for partial differential equations on 3d surfaces: Time-dependent problems
Z Fang, J Zhang, X Yang
arXiv preprint arXiv:2103.13878, 2021
72021
Ensemble learning for physics informed neural networks: A gradient boosting approach
Z Fang, S Wang, P Perdikaris
ICLR 2024, 2024
62024
Learning only on boundaries: a physics-informed neural operator for solving parametric partial differential equations in complex geometries
Z Fang, S Wang, P Perdikaris
Neural Computation 36 (3), 475-498, 2024
52024
Analysis and application of stochastic collocation methods for Maxwell’s equations with random inputs
J Li, Z Fang
Adv. Appl. Math. Mech 10 (6), 1305-1326, 2018
42018
A note on breaking of symmetry for a class of variational problems
DG Costa, Z Fang
Applied Mathematics Letters 98, 329-335, 2019
22019
A fitted finite volume method for unit-linked policy with surrender option
S Chang, Z Fang, X Liu, V Shaydurov
Comput. Res 2, 49-53, 2014
12014
SimNet: A Neural Framework for Physics Simulations
O Hennigh, M Nabian, A Subramaniam, K Tangsali, Z Fang, S Wang, ...
APS Annual Gaseous Electronics Meeting Abstracts, BM22. 005, 2021
2021
Analysis and Application of Single Level, Multi-Level Monte Carlo and Quasi-Monte Carlo Finite Element Methods for Time-Dependent Maxwell’s Equations with Random Inputs
X Wang, J Li, Z Fang
Communications in Computational Physics 29 (1), 211-236, 2021
2021
Uncertainty Quantification for Maxwell's Equations
Z Fang
University of Nevada, Las Vegas, 2020
2020
系统目前无法执行此操作,请稍后再试。
文章 1–20