Monitoring economic development from space: using nighttime light and land cover data to measure economic growth S Keola, M Andersson, O Hall World Development 66, 322-334, 2015 | 356 | 2015 |
A multiscale object-specific approach to digital change detection O Hall, GJ Hay International journal of applied earth observation and geoinformation 4 (4 …, 2003 | 229 | 2003 |
Remote Sensing of Yields: Application of UAV Imagery-Derived NDVI for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa I Wahab, O Hall, M Jirström Drones 2 (3), 2018 | 138 | 2018 |
Detecting dominant landscape objects through multiple scales: An integration of object-specific methods and watershed segmentation O Hall, GJ Hay, A Bouchard, DJ Marceau Landscape Ecology 19, 59-76, 2004 | 112 | 2004 |
Characterization and quantification of data voids in the shuttle radar topography mission data O Hall, G Falorni, RL Bras IEEE Geoscience and Remote Sensing Letters 2 (2), 177-181, 2005 | 68 | 2005 |
Classification of maize in complex smallholder farming systems using UAV imagery O Hall, S Dahlin, H Marstorp, MF Archila Bustos, I Öborn, M Jirström Drones 2 (3), 22, 2018 | 64 | 2018 |
A method for landscape regionalization based on fuzzy membership signatures O Hall, W Arnberg Landscape and Urban Planning 59 (4), 227-240, 2002 | 58 | 2002 |
Remote sensing in social science research O Hall The open remote sensing journal 3 (1), 2010 | 57 | 2010 |
A pixel level evaluation of five multitemporal global gridded population datasets: a case study in Sweden, 1990–2015 MF Archila Bustos, O Hall, T Niedomysl, U Ernstson Population and environment 42, 255-277, 2020 | 51 | 2020 |
High-resolution African population projections from radiative forcing and socio-economic models, 2000 to 2100 N Boke-Olén, AM Abdi, O Hall, V Lehsten Scientific data 4 (1), 1-9, 2017 | 50 | 2017 |
Nighttime lights and population changes in Europe 1992–2012 MF Archila Bustos, O Hall, M Andersson Ambio 44, 653-665, 2015 | 49 | 2015 |
A review of explainable AI in the satellite data, deep machine learning, and human poverty domain O Hall, M Ohlsson, T Rögnvaldsson Patterns 3 (10), 2022 | 34 | 2022 |
Saving the woodpeckers: Social capital, governance, and policy performance A Duit, O Hall, G Mikusinski, P Angelstam The Journal of Environment & Development 18 (1), 42-61, 2009 | 31 | 2009 |
Introduktion till kartografi och geografisk information O Hall, G Alm, S Ene, U Jansson Studentlitteratur AB, 2003 | 27 | 2003 |
Population centroids of the world administrative units from nighttime lights 1992-2013 O Hall, MFA Bustos, NB Olén, T Niedomysl Scientific Data 6 (1), 235, 2019 | 26 | 2019 |
The use of drones in the spatial social sciences O Hall, I Wahab Drones 5 (4), 112, 2021 | 24 | 2021 |
World poverty, environmental vulnerability and population at risk for natural hazards O Hall, A Duit, LNC Caballero Journal of Maps 4 (1), 151-160, 2008 | 24 | 2008 |
A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications O Hall, F Dompae, I Wahab, FM Dzanku Journal of International Development 35 (7), 1753-1768, 2023 | 23 | 2023 |
From census to grids: comparing gridded population of the world with Swedish census records O Hall, E Stroh, F Paya The Open Geography Journal 5 (1), 2012 | 22 | 2012 |
How data-poor countries remain data poor: Underestimation of human settlements in Burkina Faso as observed from nighttime light data M Andersson, O Hall, MF Archila ISPRS International Journal of Geo-Information 8 (11), 498, 2019 | 17 | 2019 |