关注
Jannik Kossen
标题
引用次数
引用次数
年份
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
J Kossen, N Band, C Lyle, AN Gomez, T Rainforth, Y Gal
NeurIPS, 2021
1132021
Structured Object-Aware Physics Prediction for Video Modeling and Planning
J Kossen, K Stelzner, M Hussing, C Voelcker, K Kersting
ICLR, 2020
662020
Global green hydrogen-based steel opportunities surrounding high quality renewable energy and iron ore deposits
A Devlin, J Kossen, H Goldie-Jones, A Yang
Nature Communications 14 (1), 2578, 2023
512023
Active Testing: Sample-Efficient Model Evaluation
J Kossen, S Farquhar, Y Gal, T Rainforth
ICML, 2021
492021
Wie Maschinen lernen
K Kersting, C Lampert, C Rothkopf
Wiesbaden: Springer, 2019
412019
In-context learning learns label relationships but is not conventional learning
J Kossen, T Rainforth, Y Gal
ICLR, 2024
29*2024
Active Surrogate Estimators: An Active Learning Approach to Label-Efficient Model Evaluation
J Kossen, S Farquhar, Y Gal, T Rainforth
NeurIPS, 2022
132022
Three Towers: Flexible Contrastive Learning with Pretrained Image Models
J Kossen, M Collier, B Mustafa, X Wang, X Zhai, L Beyer, A Steiner, ...
NeurIPS, 2023
52023
Active Acquisition for Multimodal Temporal Data: A Challenging Decision-Making Task
J Kossen, C Cangea, E Vértes, A Jaegle, V Patraucean, I Ktena, ...
TMLR, 2023
42023
Detecting hallucinations in large language models using semantic entropy
S Farquhar, J Kossen, L Kuhn, Y Gal
Nature 630 (8017), 625-630, 2024
32024
Klassifikation: Schubladendenken!
J Aberham, J Kossen
Wie Maschinen lernen: Künstliche Intelligenz verständlich erklärt, 45-52, 2019
32019
Regression: Voll im Trend
J Kossen, ME Müller
Wie Maschinen lernen: Künstliche Intelligenz verständlich erklärt, 39-43, 2019
22019
Marginal and joint cross-entropies & predictives for online Bayesian inference, active learning, and active sampling
A Kirsch, J Kossen, Y Gal
arXiv preprint arXiv:2205.08766, 2022
12022
Verzerrung-Varianz-Dilemma: Voll daneben!
J Kossen, ME Müller
Wie Maschinen lernen: Künstliche Intelligenz verständlich erklärt, 119-123, 2019
12019
Faltungsnetze: Neuronales Origami
J Kossen, ME Müller
Wie Maschinen lernen: Künstliche Intelligenz verständlich erklärt, 163-169, 2019
12019
Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs
J Kossen, J Han, M Razzak, L Schut, S Malik, Y Gal
arXiv preprint arXiv:2406.15927, 2024
2024
Estimating the Hallucination Rate of Generative AI
A Jesson, N Beltran-Velez, Q Chu, S Karlekar, J Kossen, Y Gal, ...
arXiv preprint arXiv:2406.07457, 2024
2024
Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities
A Nikitin, J Kossen, Y Gal, P Marttinen
arXiv preprint arXiv:2405.20003, 2024
2024
Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs
J Han, J Kossen, M Razzak, L Schut, SA Malik, Y Gal
ICML 2024 Workshop on Foundation Models in the Wild, 0
系统目前无法执行此操作,请稍后再试。
文章 1–19